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Abstract: This paper presents theoretical and experimental aspects related to the establishment of integ-
rity status of the multi-layer composite materials. In order to do this ultrasounds will be used with rela-
tively low frequency (100-500 kHz) in the shape of layer’s waves (Lamb’s waves). First, theoretical model 
of propagation of the Lamb’s waves in a mono-layer isotropic material plaque situated in a fluid, and 
generalizing by using the Debye’s series developing formalism it will determine the conception of a 
mathematical model adequate to the proposed purpose. The results obtained in such way were compared 
to those obtained through experiments, having as consequence that the mathematical model corresponds 
to the physical reality and can be successfully used in the determination of mechanical properties or of 
the integrity state’s of a heterogeneous composite material. 
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1.  INTRODUCTION   
 

The reflection and the transmission of the homoge-
nous plane waves in an isotropic material layer with par-
allel faces is a subject of a lot of studies in ultrasonic 
field [1]. In the specialized literature we find works 
which treat the reflection and transmission of the hetero-
geneous waves through a solid simple interface and 
through a fluid layer. Much closer to the physical reality 
and to the proposed model of this article is the studies of 
[4] which deal with the case of an isotropic solid layer, 
viscous-elastic, immersed in a viscous fluid and therefore 
submitted to the activity of some of the heterogeneous 
plane waves. The structure of a composite material is 
mainly heterogeneous, because it is composed from a 
fiber texture more or less compact, included in a matrix, 
usually epoxy resin. From the specialized literature and 
taking into consideration the working frequencies situ-
ated somewhere in the interval between 100−500 kHz, it 
may be assimilated approximately and with a good re-
flection in the reality, all this structure as being homoge-
nous. Instead of it, the presence of the fibers makes the 
composite material to have a strong anisotropic charac-
ter.  

 
2.  PROBLEM FORMULATION   
 

In order to calculate the dispersion curves of the 
Lamb’s waves in a solid layer of an isotropic homoge-
nous material, Viktorov [5] decomposes the acoustic 
field from the inside of the layer in the sum of the scalar 
potential Φ  and the rotational potential vector Ψ

uur
.  
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The studded layer has infinite dimensions to direc-

tions 1 and 2 of the tri-axial orthogonal mark from the 
Fig. 1, and the thickness d, finite to direction 3. 

 
 

Fig. 1. The solid isotropic homogenous layer in the vacuum: 
references axis. 

 
It will be considered as a plane non-homogenous 

wave propagating to the direction 1. The potentials are 
invariant translating to the direction 2; therefore all the 
physical values have partial derivates zero in relation 
with variable x2. The scalar potential  and the vector 
potential 

Φ
Ψ
uur

will have the following form: 
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where:  
• Φ  the amplitude of scalar potential; 
• Ψ

uur
the amplitude of the vector potential;  

• k − wave number;  
• ω − wave pulsation;  
• t − time. 
 For a propagating wave with a wave number k and 

pulsation ω, the displacement vector component u
r

 will 
be: 
 

 2
1

3

u ik
x

∂ψ
= φ−

∂
, (4) 

 
3 2

3

u ik
x
∂φ

= ψ −
∂

, (5) 

 1
2 3

3

u ik
x
ψψ ∂

= − +
∂

. (6) 



280 

 It can be noticed that equations (4) and (5) are cou-
pled and depend only on the potentials Φ and Ψ2. The 
equations describe the Lamb’s wave that propagates in 
polarized plaque in sagital plan. The third equation is 
independent and describes the transversal wave polarized 
horizontally along the axis OX2, named wave TH (trans-
versal horizontal). In physical sense, the aim pursued was 
to model an incident wave with known characteristics 
which is propagate under a special angle in a composite 
material layer immersed in a fluid medium. The isotropic 
case: It will be treated further on the simplified case of 
the reflection and the refraction of a heterogeneous plane 
wave with unit amplitude at the origin, in an absorbent 
isotropic presumed layer, immersed in a fluid with know-
ing acoustic properties. The field of the acoustic dis-
placement in the interior of the layer, in stationary re-
gime, will be given by the formula:  
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The exponential *exp( )mi− φ  it is called phase’s factor, 
and  it is called phase difference. 

 
where:  
• *

pmX  the wave amplitude, the sign (*) denote the fact 
that the value may be complex; 

• *
pmP  the wave polarization vector;  

• *
pmK  wave vector; 

,m L T=  the type of the propagated wave (L –
longitudinal, T –  transversal); 
•  the interface where the waves diffraction 

take place (1 – superior, 2 – inferior). 
1, 2p =

 In the immersion fluid the field of the analogical 
acoustic displacement will be given by the relations: 
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For estimating the global reflection/refraction coeffi-

cients of the layer, i.e. for finding the amplitude expres-
sion of all the excited waves in a solid and fluid layer, it 
will be considered that each interface of the layer is an 
acoustic diopter between two semi-infinite mediums, 
situated on the distance of +/−d/2 on the median plan of 
it [3]. The problem will be reduced then to calculate three 
amplitudes corresponding to five elementary possible 
cases, considered separately. Each of this case it is a 
classical problem for four waves’ propagation and the 
solution is discussed in specialized literature [2]. The 
obtained solutions should take into consideration the fact 
that the interface on which the waves’ reflec-
tion/refraction occurred, it is situated at the distance +/-
d/2 of the centered mark in the median plan of the layer. 
Thus, if  (p, s – conversion coefficient of the inciden-
tal type p wave in the type s transmitted/reflected wave) 
is the amplitude of the evaluated wave, placing the origin 
of the Cartesian mark on the interface, the expression of 
this amplitude on the distance z will be given with the 
relation: 

0*
psX

 
 ,  (9) 0 ** * exp( )ps ps miX X= − φ

 
 
 

Fig. 2. Propagation in a semi-infinite medium; 5 possible 
cases. 

 
where * * *cosm mm K z= θφ . 

mφ
With a pointed line the incipient wave and with a 

continuous line the reflected and/or transmitted wave 
represented. 

Further on, will be define three vectors composed 
from reflection and refraction coefficients of the layer, as 
follows: 

 
 { }* * * *
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p pR pL pTX X X X= , (11) 
 

where the components * , of the mR ( , ,m R L T= ) 0X  
vector from the 10-th relation, are respectively, R − re-
flection coefficient, L − longitudinal transmission and     
T − transversal transmission on the separation (dipoter) 
interface, fluid-solid, for an incidental wave in fluid. 

In stead of it, vector’s components *
pX , especially the 

quantities *
pmX , with ( 1, 2p )=  and (m = L, T) are rela-

tive to excited waves in solid, at the interface of the sepa-
ration p. 

For the case when is considered an incidental 
(pointed) wave which propagate in fluid in the sense of 
the Oz axis the components of the vector Xo will be ob-
tained, Fig. 2,a. 

For the rest of the cases, when the situation of some 
longitudinal and transversal waves incident on the 1 in-
terface it is analyzed in turn, coming from the solid (the 
cases 2b and 2c), then of the incidence of the 2 surface of 
the same types of waves coming from the solid in the 
increasing sense of the Oz axis it will result the compo-
nents of four reflection/refraction vectors on each inter-
face. For each of the evaluated cases the amplitude of the 
incidental wave’s it is considered known and equal with 
the unity. 

In their turn, these one admit the definition of two 
matrixes of reflection/refraction on each interface, con-
sidered in the following manner: 
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Without relate in details of the calculus, the totality of 
the reflection/refraction coefficients presented in the 
above expression, is determined on writing the continuity 
equation in a point, on the considered interface [2]. 
It will be noted with [T] and it is called double reflection 
matrix in the interior of the solid layer, the matrix: 
 

 [ ] [ ][ ]1 2T R R= . (13) 
 

This one will have the form: 
 

 , (14) 
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T
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where the 6 non-zero coefficients of the double reflection 
matrix[T], are given by the formula: 
 
 . (15) 1 2 1 2

ps pL Ls pT TsT R R R R= +
 

This double reflection matrix is the geometrics series 
ratio, named Debye’s series.  

 

 2 3( )
1 0([1] [ ] [ ] [ ] ... [ ] )nnX T T T T= + + + + + X .  (16)  

 
The coefficients’ vector of the second interface it is 

obtained immediately with the relation: 
 
 ( )

12
( )
2 [ ] nn R XX = . (17) 

 
The vector which gives reflection and transmission 

coefficients will be obtained taking into consideration an 
infinity of the successively reflections in the interior of 
the considered solid layer, i.e. it is the limit of the ante-
rior series when (n) – is the number of the successively 
reflections, augments to the infinity. 

We will have: 
 
 [ ] 1

1 0([1] )TX X−= − , (18) 
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It is important to emphasize that all of these calcu-

lated coefficients are related to propagation of the waves 
through a single acoustic diopter which separate the two 
mediums considered half-infinites, fluid-solid, though 
they define the propagation of the acoustic waves in the 
interior of the layer with two separated interfaces fluid-
solid. 
 
3 PROBLEM SOLUTION 
 

For justification the use of the Debye’s series, it will 
be evaluate in a transitory regime the response of an 
aluminum layer to the propagation of a homogenous 
plane wave. 

In a classical mode, the evaluation of this response it 
is done by resolving a time convolution equation. The 
acoustical field resulted after scanning the solid layer it 
will be obtained with the Fourier integral in the fre-
quency: 

 

 ( , , , ) ( ) ( , , )exp( (2 ))A x z t E f H f z i ft df
+∞

−∞

θ = θ π∫ , (20) 

where E(f) is the Fourier’s transformed data of the refer-
ences sign and H(f, θ, z) is the function of transfer of the 
solid layer immersed in fluid (in this particular case the 
coefficient of transmission of the layer, i.e. X2R, X2L, and 
X2T). 
 For simulating experimental conditions, the reference 
sign emitted by the palpate will be modulate being the 
multiplication between a function having a frequency f0  
and the Gauss’s bell with the opening 2σ and the ampli-
tude A0. 

The spectrum of such a signal will be (Fig. 3): 
 

 2 2
0 0( ) exp( [ ] )exp( 2 )E f A f f i ft= −πτ − π . (21) 

 
For the integral from the (20) relation, being unable 

to be analytically resolved, it was used a numeric method 
for its calculation, the continuous sum being replaced 
with a finite terms sum (the calculus being performed 
with a program written in C++ Builder5). In the follow-
ing two figures are represented the transmitted sign by 
the aluminum layer for a incidental wave, calculated in 
two situations: when H = X2R taking into consideration all 
the internal reflections and when (1)

2RH X=  is paid atten-
tion on a single doubled reflection in the interior of the 
layer. 

The other parameters that interfere are: 
It may be revealed that in the second case, that one 

using the Debye’s series, the echo’s become much more 
visible and easy to read in comparison with the first case, 
where the totality of the reflections determine an accen-
tuated superposition of them. 
 

 
01 0 0 1

d8, 2, 4, 1, 2.78, 20, 10mm
2L T Alk k k d= = = = = = =
ωρ ρ
π

. 

 

 
Fig. 3. The reference signal simulated depending on time. 

 

 
 

Fig. 4a. The response of the immersed layer using a classical 
transmitted coefficient. 
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Fig. 4b. The response of the immersed layer using Debye’s 

series. 
 

The abundance of the visible signs in first case is 
caused by the discretisation of the spectrum, the calcu-
lated sign containing beside its useful part the superposi-
tion of all other trances with the same duration (20 µs) 
which constitute its "queue". 

Instead of it, the use of Debye’s series allow truncate 
the sign duration, fixing the repeated number of echoes 
in the interior of the layer, so that in correlation with the 
reverse Fourier’s discrete transformed data, not to origi-
nate in undesirable superposition. 

At the final, a confrontation theory-experiment done 
on a layer of composite material immersed in water con-
firm the anterior results. There are represented transmis-
sion and reflection modules depending on the angle of 
the incidence calculated theoretically with the (18) and 
(19) relations. 

Several conclusions may be extracted: on the one 
hand the concordance of the theory with the experiment 
proves the existence of the heterogeneous plane waves’ 
interaction in the interior of the layer immersed in the 
fluid. It is necessary to specify that all the anterior theory 
is not valid in case when the faces which form the diopter 
of the separation between the two mediums, fluid and 
solid, are not parallel. 

The presented oscillations from the Figs. 5a and 5b 
are not caused by the numeric data processing but by the 
waves’ interference phenomenon, which is though very 
amortized, keep being visible. 

The other parameters which interfere in the calculus 
are: 
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4. CONCLUSIONS  
 

As a result of this study, it was demonstrated that the 
use of Debye’s series in the calculus of reflection and 
transmission coefficients of a layer from a composite 
material, immersed in a fluid, it is justified from the 
physical reality point of view. 

Definition of the mathematical machine, as well as its 
inclusion in a specialized software application on a plat-
form C++ Builder5, it will permit in the future the imagi-
nation and prosecution of a numerous trying for determi-
nation of the behavior of different materials while pass-
ing ultrasound waves. 

 

 
 

Fig. 5a. The global transmitting coefficient module depending 
on the incidental angle continuous lines − theory, square – ex-

periment. 
 

 
 

Fig. 5b. The global reflection coefficient module depending 
on the incidental angle continuous lines − theory, square − ex-

periment. 
 

The particular application for which was created the 
program and especially that to be use for the study of 
composite materials, may be easily extended and to other 
situations excepting the fluid immersion, because this 
software contains modules easy to be change and use for 
any other application from the domain.  
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