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Abstract: Inverse kinematics model of the industrial robot is used in the control of the end-effector trajec-
tory. The solution of the inverse kinematics problem is very difficult to be found, when the degree of free-
dom increase, in many cases being impossible. In these cases, the numerical approximation or other
methods with diffuse logic are used. The paper presents a new method for optimization of the inverse
cinematic solution by applying the sigmoid bipolar hyperbolic tangent proper neural network with multi-
ple time delay and recurrent links —SBHTNN (TDRL). Using this proposed method we can obtain quickly
after applying the inverse kinematics method one approximated solution accompanied by a decrease of
the trajectory errors.

Key words: trajectory optimization, direct kinematics, inverse kinematics, neural network, virtual instru-
mentation.

1. INTRODUCTION (Fig. 1) and some virtual LabVIEW instruments. The
structural cinematic schema is shown in Fig. 2ngshe
recurrent matrix method all joints positions of ot
structure were obtained.

The recurrent general mathematical model contains
the following matrix form:

The inverse kinematics was used to control the end
effector trajectory. It is difficult to find the uerse kine-
matics solutions obtained by geometrical method nwhe
the robot degree of freedom increases. Inversenide
ics solutions are obtained usually by geometricaihod,
numerical method with known outputs, and neurat net )° = (N2, +[D]°, ()™, (1)
work optimization [1, 2, 3, 4, and 5]. The neuratwork ' ' ' '
method to obtain the real solutions of the invekisee-
matics in the actual research of the world doesshotv
the simulation results and the optimization of #reors

wherer? is the matrix form of the absolute position vec-
tor of the jointi; r;,° — matrix form of the absolute posi-

. S . .

by root means square method. For optimization ef th t|on.(')f the Jo'nt'b Ln h ma'trllx f%r,m Of_ the Orelatlve
trajectory error, this paper proposes by applyimg in-  POSition vector between the joiritandi - 1, Di4" - co-
verse kinematics control a new method based oneprop ordinatedransform matrix from the joirt- 1 to the base
neural network that uses three layers, many timayde Carte3|.an system. The transform matrix is calcdlate
blocks and recurrent links. All layers use the #ams  follows:

sigmoid bipolar hyperbolic tangent function typegake 0 of Tt .

in consideration the influences of the input datatte [D]i—l :[D]l [D]2--[D]:—1' )
internal coordinateg; in all two directions of the move- i . ) )
ment [6, 7, 8, 9, and 10]. The last layer is useddapt where D;,'“ is the coordinates transformation matrix
the number of input data vector with the neededbmim from the Cartesian systeim 1 to thei - 2.

of output. The optimal errors were obtained by gingl
the back propagation proper method, sigmoid hydierbo
tangent sensitive function, and multiple time detad
recurrent links.

2. DIRECT KINEMATICS MODEL

The experimental research and the theoretical cine-
matic analysis were realized using one arm typeotrob
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After applying the recurrent mathematical model to 2 o
the presented robot structure, the following positvec- S —
tors of all robot joints were obtained: '5F° O 5o TSy
i23
«
0 0 csl, s
(N;=|0[();=| 0 [(Ns= ssl, | b
|1 |1+|2 |1+|2+CZI3
3) Fig. 5. The absolute variation of the position for somguin
csl +(ces tesc)l, data of the internal coordinatgs a — 3D trajectory and coor-
(r)Z = ssl, +(sc,s, +ssc)l, | dinates of the end poirit;- front panel with the input data.

[+ +cl. +(-ss + [ ! . . . .
Hlo el (s reg)l, With the virtual LabVIEW instrumentation for ditec

kinematics we can show the absolute Cartesian ydtre
different input relative coordinateg. We used this in-
strument to verify the relative coordinates obtdidter
applying the proper neural network method for iseer
kinematics settlement.

wherel; is the lengths of each robot modulgs;s — co-
sines and sinus trigonometric functions of the tieda
angle and relative robot coordinajédetween andi — 1
robot bodies. The direct kinematics LabVIEW icordan
the results of the direct cinematic analysis amshin

Figs. 3-5. 3. NEURAL NETWORK APPLICATION
b rnen S N To solve the inverse kinematics problem, one proper
37k o o o0 ES;I:E; = H Bipolar Sigmoid Hyperbolic Tangent Neural Network
e, s P = type was used having some Time Delays and Recurrent
Il. L a Links (BSHTNN (TDRL)) with intermediate control of
P — § =i el the target after each layer. The used neural né&tigoof
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Fig. 4. The icon of the LabVIEW VI for the assisted sintida
of the direct kinematics. Fig. 6. The Neural Network simplified schema.
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We used the neural network calculus complexmatrix of each layerf — sensitive functiont — target
schema (Fig. 7) to develop the LabVIEW virtual inst  matrix after each layen; — output matrix before apply-
mentation to simulate the inverse kinematics settlt.  ing the sensitive functior; — error matrix of position or
In the neural network schema, we used the followingof rohot coordinates after each laykr: magnifier gain
notations:p is the input matrix vectoi, — output matrix g proportional control of the error.
from each neural network layes(t — 1) — output matrix Using the neural network schema to solve the irvers
after one delay time blocky — weight matrix of each kinematics problem, we achieved the following coempl
neural network layertcg, — teaching gainp;, — biases  matrix mathematical model:
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Fig. 7. The Neural Network calculus schema.
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Fig. 8. Part of the Neural Network block schema.
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n =[w' +teg, [](p-a,(t-1) + (3 +&,);
_al-e").
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&=t -a;
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C l+e™
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g =k(a, —¢,); (4) Fig. 11. The variation of the absolute coordinates functibn

theq;,, g, or gz determined coordinates from the neural network
csl, +(ces +csc)l, method.
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This model and the final form of the neural network .
schema were established after analyzing some diionila N\
LabVIEW results. With virtual instrumentation weség
can make some new links, loops or input correctibn
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Fig. 9. Proper neural network icon for inverse kinematics.

After the analysis of the results of the two stedges
ATEE of the numerical simulation by using the properraku
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Fig. 14. The front panel of the VI with the target and ah¢a curves after applying
the proper inverse kinematics neural netwodase study 1.
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Fig. 15. The front panel of the VI with the target and ah¢a curves after applying
the proper inverse kinematics neural netwodase study 2.

and choice of the delay step. In the future wollkih@se  effector position, the extreme precision will betabed
influences will be studied for achieving the enteefor  with the incremental control in closed loop of adbot
absolute position errors. Now, it is possible t@ tse  axes only for the last part of the way. By applythis
obtained results in the control of the movemenhviit method, the time of the movement will be shortened,
verse kinematics of the arm type robot for the dapi dynamic behaviour improved, and control of theetaj
movement of the robot arm near the imposed findt en tory will be safer.
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(2]

The paper showed one new neural method to obtain
the relative robot coordinates knowing the datathaf

5. DISCUTION AND CONCLUSIONS

target absolute end-effector position. The reseavah 3l
made by applying this proposed method to one dicklct

arm type robot by some new virtual LabVIEW instru-
ments. The theoretical research contents two ways: 4]

 first, the analysis of the absolute 3D trajectofypie
arm type robot, after applying the direct kinematic
method with one proper LabVIEW VI and 5

» the second, the analysis and validation of the new
proper Sigmoid Bipolar Hyperbolic Tangent Neural
Network with many Time Delay and Recurrent Links, [6
SBHTNN (TDRL). The second research way was
made by comparing for two study cases the resfilts a
ter applying the internal robot coordinates, oledin
from the neural network, in the direct kinematids V
with the imposed absolute target of the end-effecto 71
position.
The research presented in the paper is a gengral a

proach and it can be used in many other application

when it is necessary to apply the optimization mdth [8]
The future work will be the developing of the iaitone
using neural network to obtain the increasing ef pine-
cision more than it was obtained. The shown methitid [

open the way to optimize the mobile and airplarmot®
trajectory and applying the smart materials andrsma
systems to the robotics field.
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