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Abstract: Inverse kinematics model of the industrial robot is used in the control of the end-effector trajec-
tory. The solution of the inverse kinematics problem is very difficult to be found, when the degree of free-
dom increase, in many cases being impossible. In these cases, the numerical approximation or other 
methods with diffuse logic are used. The paper presents a new method for optimization of the inverse 
cinematic solution by applying the sigmoid bipolar hyperbolic tangent proper neural network with multi-
ple time delay and recurrent links − SBHTNN (TDRL). Using this proposed method we can obtain quickly 
after applying the inverse kinematics method one approximated solution accompanied by a decrease of 
the trajectory errors. 
  
Key words: trajectory optimization, direct kinematics, inverse kinematics, neural network, virtual instru-

mentation.  
 

1.  INTRODUCTION 1 
 

The inverse kinematics was used to control the end-
effector trajectory. It is difficult to find the inverse kine-
matics solutions obtained by geometrical method when 
the robot degree of freedom increases. Inverse kinemat-
ics solutions are obtained usually by geometrical method, 
numerical method with known outputs, and neural net-
work optimization [1, 2, 3, 4, and 5]. The neural network 
method to obtain the real solutions of the inverse kine-
matics in the actual research of the world does not show 
the simulation results and the optimization of the errors 
by root means square method. For optimization of the 
trajectory error, this paper proposes by applying the in-
verse kinematics control a new method based on proper 
neural network that uses three layers, many time delay 
blocks and recurrent links. All layers use the sensitive 
sigmoid bipolar hyperbolic tangent function types to take 
in consideration the influences of the input data to the 
internal coordinates qi in all two directions of the move-
ment [6, 7, 8, 9, and 10]. The last layer is used to adapt 
the number of input data vector with the needed number 
of output. The optimal errors were obtained by applying 
the back propagation proper method, sigmoid hyperbolic 
tangent sensitive function, and multiple time delay and 
recurrent links.  
 
2.  DIRECT KINEMATICS MODEL 
 

The experimental research and the theoretical cine-
matic analysis were realized using one arm type robot 
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(Fig. 1) and some virtual LabVIEW instruments. The 
structural cinematic schema is shown in Fig. 2. Using the 
recurrent matrix method all joints positions of the robot 
structure were obtained. 
 The recurrent general mathematical model contains 
the following matrix form: 
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0 is the matrix form of the absolute position vec-
tor of the joint i; ri−1

0 − matrix form of the absolute posi-
tion of the joint i − 1; ri

i−1 − matrix form of the relative 
position vector between the joints i and i − 1; Di−1

0 −−−− co-
ordinates transform matrix from the joint i − 1 to the base 
Cartesian system. The transform matrix is calculated as 
follows: 
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where Di−1
i−2 is the coordinates transformation matrix 

from the Cartesian system i − 1 to the i − 2. 
 

 
 

Fig. 1. The used didactical arm type robot. 
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Fig. 2. The cinematic structural schema of the studied arm type 
robot.  

 
After applying the recurrent mathematical model to 

the presented robot structure, the following position vec-
tors of all robot joints were obtained: 
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where li is the lengths of each robot modules; ci,, si − co-
sines and sinus trigonometric functions of the relative 
angle and relative robot coordinate qi between i and i − 1 
robot bodies. The direct kinematics LabVIEW icon and 
the results of the direct cinematic analysis are shown in 
Figs. 3−5. 
 

 
 

Fig. 3. The variation of the absolute coordinate functions of  
q1, q2 or q3. 

 

 
 

Fig. 4. The icon of the LabVIEW VI for the assisted simulation 
of the direct kinematics. 

 
a 
 

 
b 

 
Fig. 5. The absolute variation of the position for some input 

data of the internal coordinates qi; a − 3D trajectory and coor-
dinates of the end point; b − front panel with the input data. 

   
 With the virtual LabVIEW instrumentation for direct 
kinematics we can show the absolute Cartesian values for 
different input relative coordinates qi. We used this in-
strument to verify the relative coordinates obtained after 
applying the proper neural network method for inverse 
kinematics settlement. 
 
3.  NEURAL NETWORK APPLICATION 
 

To solve the inverse kinematics problem, one proper 
Bipolar Sigmoid Hyperbolic Tangent Neural Network 
type was used having some Time Delays and Recurrent 
Links (BSHTNN (TDRL)) with intermediate control of 
the target after each layer. The used neural network is of 
8-3-3 type, with three layers that can be seen in Fig. 6.  

 
 

Fig. 6. The Neural Network simplified schema. 
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We used the neural network calculus complex 
schema (Fig. 7) to develop the LabVIEW virtual instru-
mentation to simulate the inverse kinematics settlement. 
In the neural network schema, we used the following 
notations: p is the input matrix vector; ai − output matrix 
from each neural network layer; ai(t − 1) − output matrix 
after one delay time block; wi − weight matrix of each 
neural network layer; tcgi − teaching gain; bi − biases 

matrix of each layer; f  − sensitive function; t − target 
matrix after each layer; ni − output matrix before apply-
ing the sensitive function; εi − error matrix of position or 
of robot coordinates after each layer; k − magnifier gain 
to proportional control of the error. 

Using the neural network schema to solve the inverse 
kinematics problem, we achieved the following complex 
matrix mathematical model: 

 

 
Fig. 7. The Neural Network calculus schema. 

 
 

 
 

Fig. 8. Part of the Neural Network block schema. 
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This model and the final form of the neural network 
schema were established after analyzing some simulation 
LabVIEW results. With virtual instrumentation we easily 
can make some new links, loops or input correction of 
the model.  
 
4.  EXPERIMENTAL RESULTS 
 

The experimental results were obtained after running 
the neural network for some different input data and veri-
fying the results obtained for internal coordinate qi with 
the direct kinematics LabVIEW VI.  

The icon of the inverse kinematics neural network is 
shown in Fig. 9. 
 All the weights and biases matrix were initialized by 
zero values. The magnifier gain of proportional control 
of the errors was imposed at the initial π value to assure 
on the internal robot coordinate the gain of the movement 
in two directions by 180 degree, because the maxim out-
put from the sigmoid neural network was ±1. 
 

 
Fig. 9. Proper neural network icon for inverse kinematics. 

 

 
 

Fig. 10. The front panel with input data and some results of 
the LabVIEW Neural Network simulation. 

 
 

Fig. 11. The variation of the absolute coordinates function of 
the q1, q2 or q3 determined coordinates from the neural network 

method. 
 

  
 

Fig. 12. First point and the last point of the commanded curve. 
 

 
 

Fig. 13. Front panel with the input data concerning the number 
of neurons in each layer, teaching gains, initialized weights and 

biases matrices. 
 

After the analysis of the results of the two study cases 
of the numerical simulation by using the proper neural 
network for the different target positions we can make 
the following remarks: the obtained values for internal 
robot coordinates verify the final imposed end effector 
position (target position) with 5% errors; all these errors 
are caused by the wrong choice the neuron numbers in 
each layer due to difficulty of calculation, wrong choice 
of the teaching gains and number of recurrent links, or 
position  in  the  neural network schema of the time delay 
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Fig. 14. The front panel of the VI with the target and obtained curves after applying  
the proper inverse kinematics neural network − case study 1. 

 

 
 

 
 

Fig. 15. The front panel of the VI with the target and obtained curves after applying  
the proper inverse kinematics neural network − case study 2. 

 
and choice of the delay step. In the future work, all these 
influences will be studied for achieving the end-effector 
absolute position errors. Now, it is possible to use the 
obtained results in the control of the movement with in-
verse kinematics of the arm type robot for the rapid 
movement of the robot arm near the imposed final end-

effector position, the extreme precision will be obtained 
with the incremental control in closed loop of all robot 
axes only for the last part of the way. By applying this 
method, the time of the movement will be shortened, 
dynamic behaviour improved, and control of the trajec-
tory will be safer.  
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5.  DISCUTION AND CONCLUSIONS 
 

The paper showed one new neural method to obtain 
the relative robot coordinates knowing the data of the 
target absolute end-effector position. The research was 
made by applying this proposed method to one didactical 
arm type robot by some new virtual LabVIEW instru-
ments. The theoretical research contents two ways:  
• first, the analysis of the absolute 3D trajectory of one 

arm type robot, after applying the direct kinematics 
method with one proper LabVIEW VI and  

• the second, the analysis and validation of the new 
proper Sigmoid Bipolar Hyperbolic Tangent Neural 
Network with many Time Delay and Recurrent Links, 
SBHTNN (TDRL). The second research way was 
made by comparing for two study cases the results af-
ter applying the internal robot coordinates, obtained 
from the neural network, in the direct kinematics VI, 
with the imposed absolute target of the end-effector 
position.  

 The research presented in the paper is a general ap-
proach and it can be used in many other applications 
when it is necessary to apply the optimization method. 
The future work will be the developing of the initial one 
using neural network to obtain the increasing of the pre-
cision more than it was obtained. The shown method will 
open the way to optimize the mobile and airplane robots 
trajectory and applying the smart materials and smart 
systems to the robotics field.  
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