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Abstract: In this research, teaching learning based optimization (TLBO) algorithm has been used for de-
termining optimal cutting process parameters in ball-end milling processes where multiple conflicting ob-
jectives are present. First, dynamic cutting force components have been modeled using an adaptive 
neuro-fuzzy inference system (ANFIS) based on design of experiments and then TLBO algorithm is used 
to determine the objective function maximum (cutting force surface) by consideration of cutting con-
straints. Ball-end milling experiments have been performed according to the experimental plan. Analysis 
of the developed approach has been performed to test its validity. The results showed that integrated sys-
tem of ANFIS and TLBO is an effective approach for solving multi-objective cutting conditions optimiza-
tion problem in ball-end milling. The high accuracy of results within a wide range of machining parame-
ters indicates that the system can be practically applied in industry. 
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1.  INTRODUCTION1 
 

The proper selection of machining parameters is an 
important step towards increasing productivity, decreas-
ing costs, and maintaining high product quality. Many 
researchers have studied the effects of optimal selection 
of machining parameters of end milling [1]. This prob-
lem can be formulated and solved as a multiple objective 
optimization problem [2]. In practice, efficient selection 
of milling parameters requires the simultaneous consid-
eration of multiple objectives, including maximum tool-
life, desired roughness of the machined surface, target 
operation productivity, metal removal rate, etc. [1]. In 
some instances, parameter settings that are optimal for 
one defined objective function may not be particularly 
suited for another objective function. Solving multi-
objective problems with traditional optimization methods 
is difficult and the only way is to reduce the set of objec-
tives into a single objective and handle it accordingly.  

Therefore population based heuristic algorithms such 
as evolutionary algorithms (EA) and swarm intelligence 
(SI) are more convenient and usually utilized in multi-
objective optimization problems. These methods are 
summarized by [3]. Some of the recognized evolutionary 
algorithms are: Genetic Algorithm (GA) [4], Evolution 
Strategy (ES), Evolution Programming (EP), Differential 
Evolution (DE), Bacteria Foraging Optimization (BFO), 
etc. Some of the well-known swarm intelligence based 
algorithms are: Particle Swarm Optimization (PSO) [5, 
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6], Ant Colony Optimization (ACO), Fire Fly (FF) algo-
rithm, etc. All of these algorithms are probabilistic algo-
rithms and require controlling algorithm-specific control 
parameters [7]. The proper tuning of the algorithm-
specific parameters is a very crucial factor which affects 
the performance of the algorithms [8]. 

Rao et al. [3] introduced the teaching-learning-based 
optimization (TLBO) algorithm which does not require 
algorithm-specific parameters. The TBLO is an efficient 
alternative over other population-based search algo-
rithms, especially when dealing with multi-objective 
optimization problems. It is relatively easy to implement 
and has only two parameters to adjust [3]. The working 
of TLBO algorithm is explained in the next section. 

In our research the adaptive neuro-fuzzy inference 
system (ANFIS) is used to model the objective function 
of the process, and TBLO is utilized for solving multi-
objective optimization problems observed in milling op-
erations. 

 
2.  BASIC OF TEACHING-LEARNING BASED 

OPTIMIZATION 
 

TLBO is population based method and uses a popula-
tion of solutions to obtain a global optimum. In TLBO a 
group of learners (students) is considered as population. 
TLBO is a teaching-learning process inspired algorithm 
based on the effect of influence of a teacher on the output 
of learners in a class. Teacher and learners are the two 
vital components of the algorithm and describes two 
basic modes of the learning, through teacher (known as 
teacher phase) and interacting with the other learners 
(known as learner phase). Moreover, learners also learn 
from the interaction among  themselves which also  helps 
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Fig. 1. The flowchart of the TBLO algorithm [3]. 
 

in improving their results. The learners' result is analo-
gous to the fitness value of the optimization problem. In 
the entire population the best solution is considered as 
the teacher. The output in TLBO algorithm is considered 
in terms of results or grades of the learners which depend 
on the quality of teacher.  
 The working of TLBO is divided into two phases, 
Teacher phase and Learner phase. Both phases are ex-
plained below.  
 
2.1. Teacher phase 
 In this phase the learners learn through the teacher. A 
teacher conveys knowledge among the n students (popu-
lation size, k = 1, 2, …,n) and tries to increase the mean 
result of the class M. At any teaching-learning iteration i, 

Mj,i is the mean result of the learners in a particular de-
sign variable j (j = 1, 2, …,m). m is the number of sub-
jects (i.e. design variables) offered to n number of learn-
ers. Xtotal − kbest,i is the result of the best student con-
sidering all the subjects, who is identified as a teacher for 
that iteration. The best identified student is considered as 
the teacher in the algorithm. The students will acquire 
knowledge according to the quality of teaching delivered 
and the quality of students in the class. 
 The difference between the result of the teacher and 
mean result of the students in each subject is expressed 
as: 
 
 Difference_Meanj,i = ri (Xj,kbest,i − TFMj,i), (1) 
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where Xj,kbest,i is the result of the teacher (i.e. best learner) 
in subject j. TF is the teaching factor which decides the 
value of mean to be changed, and ri is the random num-
ber in the range [0, 1]. Value of TF can be either 1 or 2. 
The value of TF is decided randomly using Eq. 2: 
 
 TF = round [1 + rand (0,1) {2−1}]. (2) 
 
 Based on the Difference_Meanj,k,i, the existing solu-
tion is updated in the teacher phase according to the fol-
lowing expression. 
 
 X'j,k,i = Xj,k,i + Difference_Meanj,k,I,  (3) 
 
where X'j,k,i is the updated value of Xj,k,i. X'j,k,i is accepted 
if it gives better function value. All the accepted function 
values at the end of the teacher phase are maintained and 
these values become the input to the learner phase. 
 

2.2. Learner phase 
In this phase the learners increase their knowledge 

with the help of mutual interactions. The students can 
gain knowledge by discussing and interacting with the 
other students. The learning phenomenon of this phase is 
expressed below. 

Every student has to interact with any other student. 
Randomly two learners P and Q are selected such that 
X'total−P,i ≠ X'total−Q,i. X'total−P,i and X'total−Q,i are the updated 
values at the end of teacher phase. 

 
   X''j,P,i = X'j,P,i + ri (X'j,P,i − X'j,Q,i), if X'total−P,i > X'total−Q,i, (4) 
 

 

   X''j,P,i = X'j,P,i + ri (X'j,Q,i − X'j,P,i), if X'total−Q,i > X'total−P,i. (5) 
 

Above equations are for maximization problem, re-
verse is for minimization problem. X''j,P,i is accepted if it 
gives a better function value 

Figure 1 show the flowchart of the TLBO algorithm 
[3]. 
 
3.  ANFIS BASED CUTTING FORCE 

PREDICTION MODEL 
 

 In this section an accurate and reliable model for pre-
dicting cutting forces during end milling process is out-
lined. The cutting force prediction model is built accord-
ing to the ANFIS method. The ANFIS method seeks to 
provide a linguistic model for the prediction of cutting 
forces from the knowledge embedded in the trained neu-
ral network.  
 By given input/output data set, the ANFIS method 
constructs a fuzzy inference system (FIS) whose mem-
bership function parameters are tuned (adjusted) using a 
backpropagation algorithm. This allows fuzzy systems to 
learn from the data they are modeling.  
 FIS Structure is a network-type structure similar to 
that of a neural network, which maps inputs through in-
put membership functions and associated parameters, and 
then through output membership functions and associat-
ed parameters to outputs.  
 Four steps are required to develop an ANFIS system.  

 
 

Fig. 2. Architecture of ANFIS cutting force model. 
 
In step 1, the training and testing data are loaded to the 
system. 

The process variables are force sensor readings (F), 
spindle speed (n), feed rate (f) and depth of cut (AD / RD). 
All the data were scaled. The whole data set is divided 
into the training and the testing set. Five hundred data 
points were used in this study. The training data set is 
used to find the initial premise parameters for the mem-
bership functions by equally spacing each of the mem-
bership functions.  

A threshold value for the error between the actual and 
desired output is determined.   

The FIS architecture and training parameters were de-
fined in step 2.  

The optimization method, the tolerance error, the 
maximal number of epoch, the number of membership 
functions and the membership functions types are de-
fined.  

The fuzzy inference system under consideration has 4 
inputs and one output. The inputs are the cutting condi-
tions. The output is cutting force sensor signal.  

In step 3, the training phase is accomplished. With 
the input-output data, the neuro-fuzzy algorithm is 
trained, and the unknown parameters are identified.   

Figur 2 shows the inputs, membership functions, and 
the fuzzy inference system for cutting force prediction.  

During the training stage, the ANFIS adjusts its inter-
nal structure to give correct output results according to 
the input features. The process is terminated when the 
error becomes less than the threshold value.  

During training in ANFIS, 50 sets of experimental 
data are used to conduct 500 cycles of learning.   

Finally, in the fourth step the trained ANFIS is used 
to predict cutting forces. 
 
4.  ADAPTATION OF TBLO APPROACH TO 

MILLING OPTIMIZATION 
 

In order to find optimal cutting parameters, ANFIS 
model of cutting forces was integrated with TBLO algo-
rithm. The optimization strategy is shown in Fig. 3.  

ANFIS model is developed, and its output is fed into 
the TBLO algorithm where constraints are defined.  
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Table 1 
Constraints and their expressions 

 

Constraints Expression Variables 

Feedrate 
maxmin

1000
ffv

D

z
f zc ≤⋅

⋅π
⋅≤  

z –number of teeth,   

fz –feeding per tooth,  

D –diameter of cutter 

  

Spindle speed  
maxmin

1000
nv

D
n c ≤

⋅π
≤  vc –cutting speed 

Radial depth of cut maxaeRD ≤  aemax –max. radial depth of cutting 

Axial depth of cut maxapAD ≤  apmax –max. axial depth of cutting 

Power of cutting dovP
KcMRR ≤⋅

60
 

MRR –metal removal rate,          

Kc –specific cutting force 

Cutting force refFnfF ≤),(  Fref –desired cutting force 

Surface roughness refaa RR ≤  Ra ref  - desired surface roughness 

 
 
TBLO algorithm is initiated with randomly generated 

answers in predefined population of students. The stu-
dent`s answers are optimum solution candidates. ANFIS 
model predicts cutting forces for each of the student.  

 

Predicted maximal forces are used as an objective 
function which PSO tries to maximize.  

The objective function serves as the only link be-
tween the optimization problem and TBLO algorithm. 

 

 
 
 
 
 
 

Fig. 3. Results of application of optimal cutting conditions searching procedure. 
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The optimization process executes in two phases. In 
first phase, the ANFIS model on the basis of recom-
mended cutting conditions generates 3D surface of cut-
ting forces, which represent the feasible solution space 
for the TBLO algorithm.  

The cutting force surface is limited with planes which 
represent the constraints of cutting process. Seven con-
straints, which arise from technological specifications, 
can be considered during the optimization process. Those 
constraints are listed in Table 1.  

TBLO algorithm generates a population of students-
learners during the second phase.  

The learners learn through the teacher and at the end 
phase increase their knowledge by interaction among 
themselves to find the maximal cutting force.  

The best answer of a student which has found the 
maximal but still allowable cutting force represents the 
optimal cutting conditions. 

The optimization process is depicted by the following 
steps: 
1. Define the optimization problem (maximization of 

cutting force surface) and initialize the optimization 
parameters: Population size (k = 8 students), number 
of generations (i = 20), number of design variables    
(j = 2 for f and n) and limits of design variables    
(fmin, fmax, nmin, nmax). 

2. Generate a random population according to the popu-
lation size and number of design variables (j = 2). 

3. Teacher phase; Calculate the mean of each design 
variable (f, n), evaluate of objective (cutting force 
surface) function for each student, identify the best 
solution (teacher), modify solution based on best so-
lution. 

4. Student phase; increase the knowledge of students 
with the help of their mutual interactions. 

5. Termination criteria; steps 3 and 4 are repeated until 
the generation number reaches a maximum genera-
tion number. 

 
Figure 3 shows simplified principle of optimization 

of cutting parameters by the use of TBLO. In this case, 
the group of students search for optimal feeding and 
spindle speed. Optimal feed rate is located at the cross-
section of the following two planes: cutting force surface 
and the limit cutting force plane. The student’s answer 
which is the nearest to mentioned cross-section represent 
the optimal feed rateand spindle speed. 

A group of Matlab m-files forms TLBO software for 
optimization. This software can be used for optimization 
of arbitrary non-linear system. The required input param-
eters required for executing TBLO algorithm are inserted 
in a software window.  

The result of optimization (optimal cutting parame-
ters) is presented to user in a tabular form.  

The progress of optimization process can be moni-
tored on graph. 

 
5.  TBLO OPTIMIZATION OF CUTTING 

PARAMETERS-TEST CASE 
 

The repeatability of the TBLO optimization strategy 
is outlined with presented test case. The accuracy and 
repeatability of the proposed optimization strategy is first  

Table 2 
Repeatability of results 

 

 
analyzed by simulations, and then it is verified by exper-
iments on a CNC machine tool HELLER BEA02 for 
16MnCrSi5 XM steel workpieces [2]. The solid ball-end 
milling cutter with two cutting edges, of 16 mm diameter 
and 8° helix angle was selected for experiments.  

The following cutting parameters and constraints 
were used: milling width RD = 2 mm, milling depth AD = 
3 mm, 500 ≤ n ≤ 2500 min-1, 10 ≤ f ≤ 950 mm/min,     
F(f, n) ≤ Fref = 600 N.  

The objective function is generated by ANFIS cutting 
force model.  

The goal of this case is to maximize the objective 
function under given constraints. In TBLO, a population 
of 10 learners was used and learned continuously until 
global maximum is found within specified constraints. 

The results are outlined in Table 2. Each run corre-
sponds to each time the program is run to find the opti-
mum machining parameters. Table 2 shows optimal cut-
ting conditions along with the number of generations it 
took to reach that optimum. 

This optimization strategy has higher convergence, 
unlike traditional methods and is always successful in 
finding the global optimum. The machining time is re-
duced by 27% as a result of optimizing the feed and 
speed.  

Figure 4 shows a typical student answers pattern to-
ward the optimum solution. Generation 0 represents the 
random initialization of the student’s answers coordi-
nates in the solution space. In subsequent generations, 
the student`s answers are tracked with "x".  

The best student in population is presented with "O". 
The solution space is marked by the rectangle. An ac-
ceptable solution has to be found within this two-
dimensional space.  

The third constraint on force is also active and as 
such is not part of these illustrations.  

By simulations the efficiency of the optimization ap-
proach is demonstrated. 
 
6.  CONCLUSIONS  
 

This study has presented multi-objective optimization 
of milling process by using ANFIS modelling and TBLO 
optimization algorithm.  

 

Test/R
un 

n [min-

1] 
f [mm/min] F [N] 

Nr. of 
generations 

1 1999 828.3 597 15 

2 1994 830.5 600 17 

3 1998 831.2 601 19 

4 1997 839.6 597 23 

5 2000 839.1 598 11 

6 1999 839.3 599 20 

7 2000 828 596 18 

8 1996 828.9 597 12 

9 1996 828.7 599 23 

10 1999 828.4 596 21 
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Fig. 4. TBLO simulation, 

 
The ANFIS model was used to predict objective func-

tion and TLBO algorithm was used to obtain optimum 
spindle speed and feed rate for a typical case of milling 
found in industry. A set of 5 constraints were used during 
optimization. The experimental results show that the 
MRR is improved by 19%. Machining time reductions of 
up to 15% are observed. This paper presents mathemati-
cal fundamentals of TBLO optimization.  

The optimal cutting conditions obtained by TLBO 
have been verified through experiments. They have been 
conducted with optimal cutting parameters to verify the 
optimization results and effectiveness of the optimization 
approach. It was found out that the experimental values 
at optimized cutting parameters are very close to the re-
sults obtained by TBLO. 

 
REFERENCES 
 

[1] F. Cus, J. Balic, Selection of Cutting Conditions and Tool 
Flow in Flexible Manufacturing System, The International 
Journal for Manufacturing Science & Technology, Vol.2, 
2000, pp. 101‒106. 

[2] U. Župerl, F. Čuš, Optimization of cutting conditions dur-
ing cutting by using neural networks, Robot. comput. in-
tegr. manuf., Vol. 19, 2003, pp. 189‒199. 

[3] R.V. Rao, V.J. Savsani, J. Balic, Teaching-learning-based 
optimizationalgorithm for unconstrained and constrained 
real-parameter optimization problems, Engineering Opti-
mization, Vol. 44, No. 12, 2012, pp. 1447‒1462. 

[4] F. Čuš, J. Balič, Optimization of cutting process by GA 
approach, Robot. comput. integr. manuf., Vol. 19, 2003, 
pp. 113‒121. 

[5] E. Ozcan, C. Mohan (1998), Analysis of a simple Particle 
Swarm Optimization system, Intelligent Engineering Sys-
tems Through Artificial Neural Networks, 8(1998),   pp. 
253‒258. 

[6] R.C., Eberhart, Y. Shi, Comparison Between Genetic Al-
gorithm and Particle Swarm Optimization, Proceedings of 
the 7th ICEC, 2003, pp. 611‒616. 

[7] P.J. Angeline, Evolutionary Optimization Versus Particle 
Swarm Optimizatio, 8n: Philosophy and Performance Dif-
ferences, in: Proceedings of the 7th ICEC, (1998),          
pp. 601‒610. 

[8] M.A. Abido, Optimal Power Flow Using Particle Swarm 
Optimization, International Journal of Electrical Power & 
Energy Systems, Vol. 24, 2002, pp. 563‒571. 

 


