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Abstract: The helical pumps with axial worm (progressive cavity pumps) are frequently used in oil 
industry, for circulating liquids in mixtures with solid abrasive particles. The pump worm has helical 
shape, with one or more lobes. Due to its complexity, this worm manufacturing is a challenging problem. 
In the paper, it is suggested an algorithm laying onto the “Minimum distance” method, which enables the 
profiling of the rack-tool generating this type of ordinate whirl of helical surfaces. The main steps of the 
algorithm are: the definition of the hypo-cycloid specific to pump rotor, the finding of the rotor functional 
profile, equidistant to the hypo-cycloid, and the finding of the rack-tool profile in the axial section of the 
worm. A numerical sample of implementing the developed algorithm, in the case of a rotor with four 
lobes, performed with the help of a dedicated MatLab soft application, is also presented, together with 
graphical representations of the rotor transversal section and of the corresponding rack-tool profile. 
 
Key words: axial helical pumps, multi-lobes rotor, rack-tool profiling, ordinate whirl of surfaces, 

minimum distance method. 
 

1.  INTRODUCTION 1 
 

The progressive cavity pump [1] is a type of positive 
displacement pump and is also known as, Moineau 
pump, eccentric screw pump or axial helical pump. It 
transfers fluid by means of the progress, through the 
pump, of a sequence of small, fixed shape, discrete 
cavities, as its rotor is turned. This leads to the 
volumetric flow rate being proportional to the rotation 
rate (bidirectionally) and to low levels of shearing being 
applied to the pumped fluid [2]. These pumps have 
application in fluid metering and pumping of viscous or 
shear-sensitive materials (e.g. food and drink pumping, 
oil pumping, coal slurry pumping, sewage and sludge 
pumping, viscous chemical pumping etc.). They were 
invented by French engineer René Moineau. 

The progressive cavity pump normally consists of a 
helical rotor and a twin helix, twice the wavelength 
helical hole in a stator. The rotor seals tightly against the 
stator as it rotates, forming a set of fixed-size cavities in 
between. The cavities move when the rotor is rotated but 
their shape or volume does not change. The pumped 
material is moved inside the cavities [3]. 

In what concerns the construction of these pumps, 
(see Fig. 1), the rotor is a worm having circular cross-
section and executes an eccentric rotation inside the 
stator. The number of lobes of the stator, zs, and of the 
rotor, zr must obey to the following condition [4]: 
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 𝑧௦ = 𝑧 + 1. (1) 

Hereby, one can talk about single-lobe rotors (zs = 1, 
Fig. 2,a), and multi-lobe rotors (zs > 1, Figs. 2,b and c). 

Due to its complexity, these rotors manufacturing is a 
challenging problem. In the present paper, it is suggested 
an algorithm laying onto the "Minimum distance" 
method.  

 
 

 
 

Fig. 1. The working bodies of the axial helical pump [5]:  
1 – stator; 2 – rotor. 

 
 

 
   a      b       c  

 
Fig. 2. Cross-sections of axial helical pumps with different 

kinematic ratio: a – 1:2; b – 5:6; c – 9:10, [5]. 

1 2 
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Fig. 3. Conjugated profiles & rolling centrodes [7]. 
 
 
 

According to the method, the rack-tool profiling can 
be performed by assimilating the rotor to an ordinate 
whirl of helical surfaces. 

The "Minimum distance" method resulted from a new 
approach of well-known Willis theorem [6], applied in 
the case of profiles associated to a couple of rolling 
centrodes (C1, C2, see Fig. 3). According to the method 
[7], the envelop of a profile associated to a couple of 
rolling centrodes is the locus of the profile points for 
which, in the successive rolling positions, the distance d 
to gearing pole P (meaning the point of tangency 
between the centrodes) is minimum. 

In what concerns paper structure, the next section 
deals with finding the equations of the transversal profile 
of the multi-lobe rotor. Third section deals with 
determining the equations of the helical surface of rotor 
flank. Fourth section aims to find the profile of the rack-
tool for generating the rotor flanks by slotting. The fifth 
section presents a numerical application, while the last 
section is for paper conclusion. 

 
2.  THE TRANSVERSAL PROFILE OF THE 

MULTI-LOBE HELICAL ROTOR 
 

The transversal profile of the multi-lobe rotor from 
the progressive cavity pump is, usually, a curve 
equidistant to a hypo-cycloid (Fig. 4). 

The following reference systems are needed in order 
to find the rotor profile: 
 xy, meaning a global system, fix, having the origin O 

situated on rotor symmetry axis, 
 x1y1 - global system, fix, having the origin O1 situated 

on roller symmetry axis, 
 XY – local system, initially overlapped to xy, having 

the origin O and executing a rotation motion of φ2 

angular parameter around it, together to the base 
circle, and 

 X1Y1 − local system, initially overlapped to x1y1, 
having the origin O1 and executing a rotation motion 
of φ1 angular parameter around it, together to the 
roller.  
The hypo-cycloid profile is described by the point A, 

belonging to the roller of r radius, during its rolling 
motion to the base circle of R radius. 

 
 

Fig. 4. The generating of hypo-cycloid curve. 

 
The equation of roller rotation around O1, written 

with matrices, is: 

 𝑥ଵ = ωଷ
்(φଵ) ∙ 𝑋ଵ. (2) 

The equation of base circle rotation around O, also 
written with matrices, is: 

 𝑥 = ωଷ
்(φଶ) ∙ 𝑋. (3) 

In the relations from above, ω3 means the well-known 
matrix of coordinates transform at rotation around z axis. 

The relative position between the two global systems 
is described by the relation: 

 𝑥ଵ = 𝑥 − 𝐵, with 𝐵 = ቀ
𝑅 − 𝑟

0
ቁ. (4) 

The base circle and the roller are initially tangent, in 
the point A. The relation between angles φ1 and φ2 during 
the rolling motion is given by the condition: 

 𝑟 ∙ φଵ = 𝑅 ∙ φଶ. (5) 

The equation of the roller motion, referred to the 
reference system of the base circle, can be obtained after 
putting together the relations (2)–(4), in the form: 

 𝑋 = ωଷ(φଶ)[ωଷ
்(φଵ) ∙ 𝑋ଵ + 𝐵]. (6) 

After noticing that, in X1Y1 reference system, the 
point A has the coordinates (r, 0), and after some 
calculus, the hypo-cycloid equations result as below: 

 ฬ
𝑋 = 𝑟 ∙ cos(φଵ − φଶ) + (𝑅 − 𝑟) cos φଶ;

𝑌 = 𝑟 ∙ sin(φଵ − φଶ) −(𝑅 − 𝑟) sin φଶ.
 (7) 

The shape (7) does not correspond to the 
technological requirements needed for pump rotor 
functioning. For this reason, an equidistant relative to the 
hypo-cycloid (7) is defined as envelop of a family of 
circles having r0 radius and the centres onto the hypo-
cycloid (Fig. 5). Hereby, the equations of such 
substitutive circle are: 

 ฬ
𝑋 = 𝑋 + 𝑟 cos β;
𝑌 = 𝑌 + 𝑟 sin β.

 (8) 

In relations (8), Xh and Yh mean the coordinates of the 
generic point from hypo-cycloid (7), while β means an 
angle defining the position of the current point belonging 
to the substitutive circle (Fig. 5). 
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Fig. 5. The technological profile of pump rotor. 
 
The coordinates of the current point from the 

equidistant to the hypo-cycloid, meaning the equations of 
the family of substitutive circles, result from (7) and (8): 
 

(𝐶)ఉ ฬ
𝑋 = 𝑟 cos(φଵ − φଶ) + (𝑅 − 𝑟) cos φଶ + 𝑟 cos β;

𝑌 = 𝑟 sin(φଵ − φଶ) +(𝑅 − 𝑟) sin φଶ +𝑟 sin β .
 

(9) 

The envelop of (C)β family can be found according to 
Gohman theorem [8], by associating to equations (9) the 
enwrapping condition: 

 ቤ
�̇�భ

�̇�భ

�̇�ஒ �̇�ஒ

ቤ = 0, (10) 

where the four elements of the determinant are partial 
derivatives of X and Y from (9) against φ1 and β. After 
calculus and by denoting: 

 𝑖 =
మ

భ
=



ோ
, (11) 

the four partial derivatives expressions result as: 
 

�̇�భ
= −𝑟(1 − 𝑖) sin[(1 − 𝑖)φଵ] − (𝑅 − 𝑟)𝑖 sin(𝑖 ∙ φଵ); 

�̇�భ
= 𝑟(1 − 𝑖) cos[(1 − 𝑖)φଵ] +(𝑅 − 𝑟)𝑖 cos(𝑖 ∙ φଵ); 

�̇�ஒ = −𝑟 sin β;           (12) 
�̇�ஒ = 𝑟 cos β.            
 

After replacing (12) in (10) and developing the 
determinant, the enwrapping condition gives: 

 tan β =
ି(ଵି) ୱ୧୬[(ଵି)భ]ି(ோି) ୱ୧୬(భ)

(ଵି) ୡ୭ୱ[(ଵି)భ] ା(ோି) ୡ୭ୱ(భ)
 . (13) 

The equations (9) together to the condition (13) give 
the equidistant to the hypo-cycloid (7), having the 
general form: 

 𝑆(φଵ) ฬ
𝑋 = 𝑋(φଵ);

𝑌 = 𝑌(φଵ),
 (14) 

and meaning the equations of the pump rotor flank. 
Note: Obviously, the angular position of the flanks of 

(14) type depends on the rotor number of lobes. 
 
3.  THE HELICAL SURFACE OF MULTI-LOBE 

ROTOR FLANKS 
 

The helical surface of the worm-rotor flank can be 
found as generated by the frontal (transversal) profile of 

the rotor, as determined through the ensemble of 
equations (9) and the condition (13), which mean the 
equations of a plane curve, having, in principle, the 
representation (14). 

In the reference system XYZ, associated to the helical 
surface following to be determined (Fig. 2), the plane XY 
is the plane of worm frontal profile, to whom a helical 
motion is given for generating the flank surface: 

 ൭
𝑋
𝑌
𝑍

൱ = ωଷ
்(𝜙) ∙ ൭

𝑋(φଵ)

𝑌(φଵ)

0

൱ + ൭
0
0

𝑝 ∙ ϕ
൱. (15) 

In relation (15), ϕ means a variable angular parameter 
in the helical motion around and along Z axis, p – the 

helical parameter of rotor flank surface, and ൭
𝑋(φଵ)

𝑌(φଵ)
0

൱ – 

the matrix containing the coordinates of the rotor frontal 
profile, (14). 

After development and calculus, the parametric 
equations of the helical surface flank, written in XYZ 
system, result as: 

 ∑(φଵ, ϕ) ቮ

𝑋 = 𝑋(φଵ) cos ϕ − 𝑌(φଵ) sin ϕ ;

𝑌 = 𝑋(φଵ) sin ϕ + 𝑌(φଵ) cos ϕ ;
𝑍 = 𝑝 ∙ ϕ.

 (16) 

4.  THE PROFILE OF THE RACK-TOOL FOR 
GENERATING THE ROTOR FLANKS BY 
SLOTTING 
 

The finding of rack-tool profile is further explained 
with the help of Fig. 6, which presents, in a certain 
position of the workpiece and tool during the generating 
process: 
 The frontal profile of the worm to be generated, 

associated to circular centrode C1 and having the 
equations (16), 

 The rolling centrodes associated to the rotor frontal 
section C1 (circle of Rr radius) and to the rack-tool C2 
(straight line tangent to C1), and 

 The generating motions between the two rolling 
centrodes, described through the parameters θ (for C1 
rotation) and λ (for C2 translation). 
The following reference systems are considered for 

finding the equations of rack-tool profile: 
 

 
 

Fig. 6. The finding of rack-tool profile. 
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 xyz, meaning a global, fix system, having z-axis 
overlapped to rotor axis, 

 XYZ – local system, initially overlapped to xyz, 
associated to the rotor frontal section and rotating 
together to it, and 

 ξηζ – local system, associated to the rack-tool and 
translating to it along C2 centrode. 
The rolling motion between the two centrodes has to 

obey to the following kinematical condition: 

 λ = 𝑅 ∙ θ. (17) 

The equations of the needed generating motions [9] 
can be written as follows: 
 The workpiece rotation, of θ angular parameter: 

 𝑥 = ωଷ
்(θ) ∙ 𝑋, (18) 

 The rack-tool translation, of λ linear parameter: 

 𝑥 = ξ + 𝐶, with 𝐶 = ൭
𝑅

𝑅 ∙ θ
0

൱. (19) 

Note: Due to the particularities of the addressed 
generating process, the radius of base circle, previously 
used for hypo-cycloid definition, R, can be accepted as 
radius of C1 centrode, Rr, hence Rr = R. 

The equation of the workpiece motion relative to the 
rack-tool reference system, written with matrices, results 
from (18) and (19): 

 

 𝜉 = ωଷ
்(θ) ∙ 𝑋 − 𝐶. (20) 

The helical surface of the rotor flank generates, in the 
rolling motion (20) between C1 and C2 centrodes, a 
family of surfaces relative to the rack-tool reference 
system: 

 (∑): ൭
ξ
η
ζ

൱ = ൭
cos θ − sin θ 0
sin θ cos θ 0

0 0 1
൱ ∙

            ቌ

𝑋(φଵ) cos ϕ − 𝑌(φଵ) sin ϕ

𝑋(φଵ) sin ϕ + 𝑌(φଵ) cos ϕ
𝑝 ∙ ϕ

ቍ − ൭
𝑅

𝑅 ∙ θ
0

൱. (21) 

 

In principle, the family of helical flanks ∑(φ1, ϕ), see 
(16), in its motion relative to ξηζ system, determines a 
surfaces family having the general form: 

 

 ൫ξ(భ ,ம)൯


: ቮ

ξ = ξ(φଵ, ϕ, θ);

η = η(φଵ, ϕ, θ);

ζ = ζ(φଵ, ϕ, θ).

 (22) 

 

The envelop of this family of helical surfaces will 
represent the flank of the generating rack-tool. 

The presented problem can be significantly simplified 
by noticing that, in fact, it is enough to solve it in the 
frontal plane of the rotor worm only (see Fig. 3). In this 
plane, the envelop of the worm frontal profile can be 
found with the help of Minimum distance method [7], 
applied to equations (22) when ϕ = 0. 

In order to find the enwrapping condition, according 
to the above-mentioned method, the gearing pole (the 

point of tangency between C1 and C2 centrodes is 
identified at first as: 

 𝑃 ฬ
ξ = 0;
η = −𝑅 ∙ θ,

 (23) 

 

corresponding to a generic position in the rolling process. 
Then, the distance between the gearing pole and the 

current point of the profiles family from ξη plane, 
derived from (22) when ϕ = 0: 

 ൫𝑆(భ)൯


: ฬ
ξ = ξ(φଵ, θ);

η = η(φଵ, θ),
 (24) 

is calculated as: 
 

 𝑑 = ඥ(ξ − ξ)ଶ + (η − η)ଶ. (25) 

 

Finally, according to minimum distance theorem [7], 
the condition of minimum is imposed to distance d by 
annulling the derivative of its expression against φ1 leads 
to the relation: 

 

 (ξ − ξ) ∙ ξ̇భ
+ (η − η) ∙ η̇భ

= 0. (26) 

 

The last relation represents the enwrapping condition 
in the specific form of the Minimum distance method. In 
the addressed case this enables the finding of a 
dependence relation of the type: 

 

 θ = θ(φଵ). (27) 

 

The ensemble formed by the equations of the profiles 
family (24), generated in the relative motion between the 
two centrodes, and the relation (26) represents the rack-
tool profile in ξη plane. If the rack-tool tooth having this 
profile is inclined with an angle corresponding to the 
inclination angle of the rotor tooth helix, then the 
resulted tool will be able to generate the helical flank of 
the multi-lobe rotor of the progressive cavity pump. 

Note: Due to the specific choice of the rolling radius, 
the tool profile for generating the rotor regions having 
arc of circle profile is identical to these arcs, so it does 
not require any effort to be found.  

 
5.  NUMERICAL APPLICATION OF THE 

PROFILING ALGORITHM 
 

A numerical application is further proposed, in order 
to sample the algorithm for profiling the rack-tool used to 
generate the multi-lobe helical rotor from progressive 
cavity pumps. The input data are (according to notations 
from Figs. 1 and 2): 
 base circle radius R = 32 mm, 
 roller radius r = 8 mm, 
 substitutive circles radius r0 = 6 mm, and 
 parameter of rotor helix p = 200 mm. 

As it can be easily noticed, because R / r = 4, the 
application concerns a rotor having four lobes. 

The first thing to be determined is the frontal profile 
of the rotor. In this purpose, a dedicated MatLab 
application was developed. 
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The application works in three successive steps: 
 The values of φ1 are discretized in [0, 2π] interval in 

101 points, then the values of β are calculated with 
(13) and the coordinates of the profile points are 
calculated with equations (9). These points define 
only the concave arc from one side of the rotor 
(depicted in continuous blue line in Fig. 7). Some of 
these values are sampled in Table 1. 

 Two arcs of circle meaning a quarter of substitutive 
circle each (depicted in dashed red line in Fig. 7) are 
joined to the extremities of the arc from above; each 
arc is determined by the coordinates calculated in 51 
points, some of them sampled in Tables 2 and 3. 

 The resulted side of the rotor profile is successively 
rotated with 90, 180 and 270 degrees, completing the 
rotor frontal profile, which is represented in red in 
Fig. 8, together to the corresponding basic hypo-
cycloid (in blue). 

 
Table 1 

Coordinates of profile points belonging to concave arc 
 

Point  
crt.  no. 

φ1  
[deg] 

β  
[deg] 

X  
[mm] 

Y  
[mm] 

1 0.0000 −1.5707 32.0000 −6.0000 
2 0.0628 −1.5550 32.0824 −5.9993 
3 0.1256 −1.5393 32.1411 −5.9980 
4 0.1884 −1.5236 32.1761 −5.9966 
5 0.2513 −1.5079 32.1876 −5.9960 
6 0.3141 −1.4922 32.1757 −5.9969 
7 0.3769 −1.4765 32.1404 −6.0000 
8 0.4398 −1.4608 32.0821 −6.0060 
9 0.5026 −1.4451 32.0009 −6.0156 
10 0.5654 −1.4294 31.8972 −6.0296 
11 0.6283 −1.4137 31.7711 −6.0486 
12 0.6911 −1.3980 31.6232 −6.0732 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
43 2.6389 −0.9110 19.4639 −12.1086 
44 2.7017 −0.8953 18.9622 −12.5041 
45 2.7646 −0.8796 18.4628 −12.9108 
46 2.8274 −0.8639 17.9664 −13.3280 
47 2.8902 −0.8482 17.4738 −13.7555 
48 2.9530 −0.8325 16.9858 −14.1926 
49 3.0159 −0.8168 16.5031 −14.6388 
50 3.0787 −0.8011 16.0264 −15.0936 
51 3.1415 −0.7853 15.5563 −15.5563 
52 3.2044 −0.7696 15.0936 −16.0264 
53 3.2672 −0.7539 14.6388 −16.5031 
54 3.3300 −0.7382 14.1926 −16.9858 
55 3.3929 −0.7225 13.7555 −17.4738 
56 3.4557 −0.7068 13.3280 −17.9664 
57 3.5185 −0.6911 12.9108 −18.4628 
58 3.5814 −0.6754 12.5041 −18.9622 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
90 5.5920 −0.1727 6.0732 −31.6232 
91 5.6548 −0.1570 6.0486 −31.7711 
92 5.7176 −0.1413 6.0296 −31.8972 
93 5.7805 −0.1256 6.0156 −32.0009 
94 5.8433 −0.1099 6.0060 −32.0821 
95 5.9061 −0.0942 6.0000 −32.1404 
96 5.9690 −0.0785 5.9969 −32.1757 
97 6.0318 −0.0628 5.9960 −32.1876 
98 6.0946 −0.0471 5.9966 −32.1761 
99 6.1575 −0.0314 5.9980 −32.1411 

100 6.2203 −0.0157 5.9993 −32.0824 
101 6.2831 0.0000 6.0000 −32.0000 

 
 

Fig. 7. The profile for one of the rotor sides. 
 

 
 

Fig. 8. The basic hypo-cycloid & full rotor profile,  
both in frontal section. 

 
Table 2 

Coordinates of points belonging to superior arc of circle 
 

Point  
crt.  no. 

φ 
[deg] 

X  
[mm] 

Y  
[mm] 

1 1.5707 38.0000 0.0000 
2 1.5393 37.9970 −0.1884 
3 1.5079 37.9881 −0.3767 
4 1.4765 37.9733 −0.5646 
5 1.4451 37.9526 −0.7519 

. . . . . . . . . . . . . . . . . . . . . . . . .  
24 0.8482 36.5006 −3.9678 
25 0.8168 36.3738 −4.1072 
26 0.7853 36.2426 −4.2426 
27 0.7539 36.1072 −4.3738 
28 0.7225 35.9678 −4.5006 

. . . . . . . . . . . . . . . . . . . . . . . . . 
47 0.1256 32.7519 −5.9526 
48 0.0942 32.5646 −5.9733 
49 0.0628 32.3767 −5.9881 
50 0.0314 32.1884 −5.9970 
51 0.0000 32.0000 −6.0000 
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Table 3 
Coordinates of points belonging to inferior arc of circle 

 

Point  
crt. no. 

φ 
[deg] 

X  
[mm] 

Y  
[mm] 

1 0 6 −32.0000 
2 0.0314 5.9970 −32.1884 
3 0.0628 5.9881 −32.3767 
4 0.0942 5.9733 −32.5646 
5 0.1256 5.9526 −32.7519 

. . . . . . . . . . . . . . . . . . . . . . . . .  
24 0.7225 4.5006 −35.9678 
25 0.7539 4.3738 −36.1072 
26 0.7853 4.2426 −36.2426 
27 0.8168 4.1072 −36.3738 
28 0.8482 3.9678 −36.5006 

. . . . . . . . . . . . . . . . . . . . . . . . . 
47 1.4451 0.7519 −37.9526 
48 1.4765 0.5646 −37.9733 
49 1.5079 0.3767 −37.9881 
50 1.5393 0.1884 −37.9970 
51 1.5707 0.0000 -38.0000 

 
The profile of the rack-tool is determined then with 

another dedicated MatLab application, which determines 
the coordinates of a number of 101 profile points, on the 
base of equations (21), when ϕ = 0, and condition (26). 
Because the analytical expressing of the condition would 
be very complicated, the couples (φ1, β) for which this is 
satisfied are found with a numerical algorithm. The 
results are presented in Table 4 (excerpt of the points 
coordinates list) and Fig. 9 (where the rotor profile is 
depicted in red, while the tool profile – in blue). 

 
Table 4 

Coordinates of rack-tool profile points (excerpt) 
 

Point  
crt.  no. 

φ1  
[deg] 

θ  
[deg] 

ξ  
[mm] 

η  
[mm] 

1 0.0000 0.0047 0.0000 −6 
2 0.0628 0.0109 0.0824 −5.9993 
3 0.1256 0.0251 0.2816 −5.9926 
4 0.1884 0.0471 0.4229 −5.9822 
5 0.2513 0.0628 0.5006 −5.9737 
6 0.3141 0.0785 0.5470 −5.9672 
7 0.3769 0.0942 0.5624 −5.9646 
8 0.4398 0.1099 0.5474 −5.9678 
9 0.5027 0.1256 0.5025 −5.9787 

. . . . . . . . . . . . . . . . . . . . . . . . . . 
47 2.8902 0.7225 −9.7959 −21.8846 
48 2.9530 0.7382 −9.8849 −22.6903 
49 3.0159 0.7539 −9.9487 −23.5015 
50 3.0787 0.7696 −9.9871 −24.3162 
51 3.1415 0.7858 −10.0000 −25.1327 
52 3.2044 0.8011 −9.9871 −25.9492 
53 3.2672 0.8168 −9.9487 −26.7639 
54 3.3300 0.8325 −9.8849 −27.5751 

. . . . . . . . . . . . . . . . . . . . . . . . . . 
93 5.7805 1.4294 0.5025 −44.2664 
94 5.8433 1.4451 0.5474 −44.2867 
95 5.9061 1.4608 0.5624 −44.2976 
96 5.9690 1.4765 0.5470 −44.3008 
97 6.0318 1.4922 0.5006 −44.2982 
98 6.0946 1.5079 0.4229 −44.2916 
99 6.1575 1.5236 0.2816 −44.2831 

100 6.2203 1.5330 0.0824 −44.2767 
101 6.2831 1.5362 0.0000 −44.2723 

 
 

Fig. 9. The rack-tool profile corresponding to the generating of 
one side of the quadrilobed helical rotor. 

 
6.  CONCLUSIONS  
 

This paper addresses the problem of profiling the 
rack-tool needed for generating the surface of the helical 
multi-lobe rotor from the progressive cavity pumps.  

As above presented, the algorithm developed in this 
purpose supposes the covering of the following issues:  
i) the defining of the hypo-cycloid specific to pump 
rotor, ii) the finding of the technological profile of the 
rotor, equidistant t the hypo-cycloid, and iii) the profiling 
of the rack-tool, on the base of the Minimum distance 
method. 

Unlike the analytical solutioning of the addressed 
profiling problem, which requires the manipulation of 
complicated expressions, having many terms, the 
proposed profiling algorithm is much simpler and 
delivers faster accurate solutions. The results of the 
presented numerical application confirm all thesething. 
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