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INCREASE  PRECISION  OF  PARALLEL  MANIPULATORS

Ion SIMIONESCU, Ion ION

Abstract: The parallel manipulators are used for many industrial applications, thanks to their better
performances: high precision and rigidity, high load capacity and high ratio between payload and net
weight. On the other hand, the parallel manipulators suffer of some drawbacks. A very important one is
the presence of singularities inside the workspace. It is very well known that the positioning accuracy of
the platform of a parallel manipulator decrease with approaching to the singular position. One of the
aims of the optimum design of the parallel manipulators is to obtain better performance, regarding the
positioning precision of the platform and implicit – of the end – effector, and the decrease of the driving
forces. The present paper discuses in detail some aspects of the optimization problem of the parallel ma-
nipulator design, so that the positioning accuracy to be maximum.
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1. INTRODUCTION

The parallel manipulators consist of a platform, which is
connected to the base by many of independent open
kinematic chains. As a rule, the platform may occupy
any position in space.

Therefore, the platform of a 6-DOF parallel manipu-
lator, so called Gough–Stewart platform, is operated by
six actuators, which are included in the connection kine-
matic chains.

It is very well known that the positioning accuracy of
the platform is decreasing with the approaching to a
kinematic singular position.

An important shortcoming of the parallel manipula-
tors is that they operated in reduced workspaces in order
to avoid the singular configurations.

The design may be idealized using various mathe-
matical models.

The techniques of idealization played a decisive role
in the success of optimization process.

The goal of the optimum kinematic synthesis of the
parallel manipulators is to establish the kinematic dimen-
sions of the component elements provided so that some
conditions regarding the precision of the positioning of
the platform are imposed.

In the optimization problems, the number of the un-
known parameters, which define the geometry of a 6-DOF
parallel manipulator, is very large. In a general case, this
number is 162 at which is added the variables of the
driving pairs.

 A lot of these parameters is constant and defines the
kinematic dimensions of the component elements, and
the rest are the variables of the kinematic pairs. For
symmetry reasons, the number of constant parameters is
much small.

For example, the actuator kinematic chains may be
grouped by twos, and these pairs may be equidistant
disposed around the center of the frame.

 But, only in the special cases, this assumption may
not be accepted.
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Fig. 1. Kinematic diagram of parallel manipulator.

Note that the solutions of an optimization problem
depend on the application which must be performed by
the manipulator [1, 3].

The design has been idealized into a mathematical
model for the purpose of analysis; the techniques of
idealization can play a decisive role. The mathematical
model based on the Denavit – Hartenberg formalism [2],
[5] may not only simplify the problem formulation, but
can also yields considerable advantage in the solving of
the problem.

Moreover, the use of the Denavit – Hartenberg for-
malism to write the analysis equations led to a very well
conditioned system and the convergence of anyone nu-
merical resolution is faster.

These equations emphasize all kinematic dimensions
of the component links and facilitated the optimization
procedure.

Through this methodology appears as elaborate, it is
able to reduce the complexity of the optimum design
problem to a manageable level.

In the following are analyzed the possibilities of the
design of the 6–DOF parallel manipulators so that the
positioning accuracy of the platform to be maximum.
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2. ANALYSIS  OF  THE  PARALLEL
MANIPULATOR

The direct kinematic analysis of the mechanism of the
parallel manipulators is generally difficult to be solved
[4] allowing a great number of equations and multiple
solutions. Moreover, in the neighborhood of the singu-
larities, the computing of the direct kinematic is very
hard or even impossible, because the value of the deter-
minant of the Jacobean matrix of the analysis functions is
very small or null.

The actuators must posses high-resolution displace-
ments in order to realize a precise displacement of the
platform.

The influence of the errors of the actuator displace-
ments to the precision of the platform positioning de-
pends with the ratios between infinitesimal displace-
ments of the platform and the infinitesimal displacements
of each actuator.

Therefore, it is necessary that the maximum value of
the derivatives of the platform position parameters with
respect to the actuator displacements (generalized coor-
dinates) must be minim.

In the other words, the ratios between platform in-
finitesimal displacements and the infinitesimal actuators
displacements must be minim.

In a singular position, a mechanism in general, a par-
allel manipulator in particular, gains one or more degrees
of freedom instantaneously.

In other words, if a parallel robot is in a singular con-
figuration, it loses its designated motion and working
capability.

In such configurations, the parallel manipulator loses
its rigidity becoming locally movable, even if the actua-
tors are blocked.

Therefore, the derivative of the positional parameters
of the platform with respect to the variables of actuate
joints tend to infinity and the system gets unstable.

2.1. Direct Kinematic Analysis

Usually, the linear actuators are joined to the base by
universal joints and to the platform by spherical joints.

In Fig. 1 are numbered and the fictitious links [2].
The kinematic analysis may be made very easy using the
well-known Denavit-Hartenberg transformation matri-ces.

The mechanism has five independent closed loops.
The matrix loop equations for analysis of the spatial
mechanism of a 6-DOF parallel manipulator are:
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=
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where: 1 11 ,θ = θ +j ju  6 61 ,θ = θ +j jv  2, 5;=j  ui and vi

are considered as known.
The Denavit – Hartenberg transformation matrices

A12, A13, A14 and A15 are commonly to all five loops.
The unknowns of the system (1) are: θ1k, k = 1, 2, 3,

5, 6; θij, 7, 9,=j  1, 5;=i  θij, j = 11, 12, 1, 5.=i
The variables s14 and ,10 ,js   1, 5=j  of the driving

prismatic pairs form the vector of generalized coordi-

nates of the manipulator and are known. First subscript
of the Denavit – Hartenberg matrix A is referred to the
number of the loop and the second subscript – to the
number of the matrix into the loop.

The solutions are well defined except the case when
the determinant of the Jacobian matrix is very small, i.e.
in the neighborhood of a dead – point. In the initial posi-
tion of the mechanism of the parallel manipulator must
be known the initial estimates of all pair variables.

To solve the analysis problem for a new position, the
vector of generalized coordinates must be incremented
by a small amount and the previous calculated unknowns
are used as initial estimates for the new position.

The position of a point P belonging to the platform
(6) is defined with respect to the frame coordinate axes
system by matrix equation (2):

A11 A12 A13 A14 A15 A16 XP7 = XP1, (2)

where T
7 7 7 71=P P P Px y zX  is the vector of the

coordinate of the point P with respect to the mobile sys-
tem o7x7y7z7 attached to the platform (6) and

T
1 1 1 11=P P P PX Y ZX  is the vector of the coordinate

of the same point with respect to the fixed coordinate
axes system.

The derivatives of the revolute pair variables with re-
spect to the time are calculated as solutions of the fol-
lowing equations:
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The components of the velocity of the point P on the
fixed coordinate axes system are calculated with equa-
tion (4).
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The positions and velocities of the inputs must all be
known as functions of time or some other independent
parameter.
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2.2. Inverse Kinematic Analysis

In the inverse kinematic analysis the equations (1) and
(2) are simultaneously solved. The unknowns are:

θ1j, j = 1, 2, 3, 5, 6;   θij, 7, 9,=j 11, 12, 1, 5;=i

s1,4; si,10, 1, 5,=i

as function of the coordinate XP1, YP1, ZP1 of the point P
and the elements of the DC orthogonal submatrix of the
direction cosines, which define the orientation of the
platform:

dc(i, j) = m(i, j),   2, 4,=i  2, 4,=j  (5)

where M = A11 A12 A13 A14 A15 A16. The elements of the
matrix M are denoted by m(i, j).

From nine direction cosines of the DC submatrix,
which set up the elements of the matrix M, only three are
independents.

But, all nine values must be specified, because the
relationship equations are nonlinear. If the link equations
between direction cosines are solved simultaneously, this
produces eight sets of six different solutions:
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To diminish the time of calculus, may be used a sim-
plified form of the Denavit-Hartenberg transformation
matrices:

cos cos sin cos sin sin

sin sin cos cos cos sin

0 sin cos
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This simplification takes into consideration that is not
necessary to calculate the multiplication of 0 or 1 by any
number. Obviously, the product of two simplified De-
navit-Hartenberg matrices must be performed using an
adequate rule. In this way, the time of calculus of the
product matrices is shorten with 45 % approximately.

3. OPTIMUM  SYNTHESIS  OF  PARALLEL
MANIPULATOR

If the goal of the optimum kinematic synthesis is to obtain
the minimum magnitude of the maximum driving force,
the objective function will be max{ ,   1, 6}.= =iF F i

The magnitudes of the driving forces may be calcu-
lated by using of the virtual work principle:
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where: ϕ, ψ and θ are the Euler angles which define the
platform orientation with respect to the manipulator
frame; qi, 1, 6,=i  are the generalized coordinates of the
6-DOF parallel manipulators: q1 = s14, 1 ,10 ,+ =j jq s

1, 5;=j  XP, YP and ZP are the coordinate of the point of

application of the resultant force X Y ZP P i P j P k= + +
that are acting to the platform.

Because the variation of the generalized coordinate qi
are independents, the solutions of the equations (7) are:

                      ,    1,  6. 
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Note that the less values of the derivatives of the plat-
form position parameters with respect to the actuators
displacement, the less magnitudes of the driving forces.

Constrains. The minimization of the objective func-
tion is made in the presence of the constrains [1, 3]
which limit the minimum distance between the axes of
any two consecutive actuators, in order to avoid the in-
terference of the actuators.

A constrain is take into consideration only if the
common normal between the axes of two consecutive
actuators is comprised between the centers O12 and O15,

and Oi8 and Oi,11, 2, 5=i  respectively.
The equations of the axes of the first and second ac-

tuators (Fig. 1) are:
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1,11 11 12 13 14 15 16 17 18 19 1,10 ;=O OX A A A A A A A A A A X
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The distance between the axes of the first two driven
kinematic chains (Fig. 1) is:
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The coordinates XR, YR and ZR of the intersection
point R of the first actuator axis and the common nor-
mally are the solutions of the following equations:
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The coordinates XQ, YQ and ZQ of the intersection
point Q of the second actuator axis and the common
normally are the solutions of the following equations:
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The constrains are:
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4. EXAMPLE

Let us consider a 6-DOF parallel manipulator with
following dimensions: α14 = α15 = αi1 = αi8 = αi,10 = π/2,

α12 = αi7 = αi,11 = –π/2, αi6 = –π i/2, αi,12 = π i/2, i = 1, 5;

si1 = 1., si6 = 0.5, si7 = –0.5, si,12 = –1., i = 1, 5;  s14 = q1,

si,10 = qi + 1, i = 1, 5.
Has been considered three design variables, namely

a1,12, = a3,12 = a5,12, α16 and α1,12.
The angles between axes of the revolute pairs, which

are adjacent to the manipulator frame, are: α36 = α16 –
– 2π/3, α3,12 = α1,12 + 2π/3, α56 = α16 + 2π/3, α5,12 =
= α1,12 + 4π/3.

The initial values of the design variables has been:
a1,12 = a3,12 = a5,12 = 0.1, α16 = –π/9, α1,12 = 10π/18.

As a result of the minimization process of the maxi-
mum magnitude of the position parameters derivatives of
the manipulator platform, with respect to the actuator
displacements, were obtained: a1,12 = a3,12 = a5,12 =
= 0.0547014, α16 = –0.722398, α1,12 = 0.804420.

The objective function has been diminished from
0.9645 to 0.838561.

The qi, 1, 6,=i  are the generalized coordinates, i.e.
the driving variables and has been values: q1 = 2.2,
q2 = –2.3, q3 = –2.4, q4 = –2.5, q5 = –2.6, q6 = –2.7. All
the other ones dimensions a, α and s are zero.
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