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AN  OPTIMIZATION  OF  TYPE  WILDHABER  GEAR  SETS  SYNTHESIS
BASED  ON  LOADING  CAPACITY.

KINEMATIC  APPROACH  TO  CRITERIA  CONSTRUCTION

Valentin ABADJIEV, Dochka PETROVA, Emilia ABADJIEVA

Abstract: The contact hydrodynamic theory of lubrication takes into account hydrodynamic and heat
processes in the lubrication film and the elastic deformations of the solid surfaces being in contact. In the
gear-drives the load is carried by the conjugate tooth surfaces and by the lubrication film between them.
Тwo mutual connected problems – a hydrodynamic lubrication problem and a contact problem of elasticity
are presented. The paper does not give a mutual solution of the above problems. The purpose is to
suggest a quality estimate of the influence of some characteristics on the gear pair loading capacity.
A kinematic approach to defining characteristics for estimating the hydrodynamic loading capacity of the
Wildhaber type gearing is presented.
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1. INTRODUCTION

In the present, the wormgears with cylindrical worm are
the most widely applied as power transmissions [1–4]. In
the class of wormgears, a special place occupies the gear
pair of type Wildhaber. It consists of cylindrical gear and
a globoid worm (with a toroid form) that envelops the
cylindrical gear (their rotation axes are perpendicular).
The cylindrical gear active tooth surfaces are planes
parallel to its axis of rotation and the worm active tooth
surfaces are envelopes of the gear plane teeth.

From a geometric viewpoint this gear pair can be
treated as a hybrid between the cylindrical wormgears
and a double enveloping gear-set since: Wildhaber gear-
set similarly to cylindrical wormgears is with a single
enveloping, the enveloped gear is the wormgear and it
has a cylindrical form; тhe driving link of the gear pair is
the worm, it has a toroid form that corresponds to the
globoid gears geometry.

From a technological point of view, the gear-set of type
Wildhaber is similar both to cylindrical wormgears and to
globoid ones as its technological synthesis and manufac-
ture are based on the second Olivier’s principle. They are
technologically different because of the different ways of
generation of the instrumental gear tooth surfaces, namely:
In the case of gear-set with cylindrical worm, the basic
gear is the cylindrical worm whose active tooth surfaces
are generated in a helical motion of the generating line
(usually a straight-line); in the case of globoidal
wormgears, the basic gear is the globoid worm whose
active tooth surfaces are generated by a straight-line that
performs two rotations with definite angular velocities; in
the case of Wildhaber gear-set, the basic gear is the cylin-
drical plane-teeth gear whose plane teeth surfaces are cut
by a milling cutter on the standard milling machine, the
globoid worm of type Wildhaber is generated according to
the second Olivier’s principle on a hobbing machine.

In USA this type of gears is successfully applied as
kinematic one (dividing head), and as a power transmis-
sion [5].

The study object in this article is a gear of type
Wildhaber when the axes of rotation (the geometric axes
of the moving links) are non-orthogonal crossed. When
are synthesized the gears, kinematic criteria for quality
control, which are based on the loading capacity are
presented.

2. BASIC  OF  MODELLING  FOR  SYNTHESIS

The specific geometry of the skew-axes hyperbolic gear-
set of type Wildhaber included the method for active
tooth surfaces generation define the chosen approach to
mathematical modeling of its synthesis. When synthe-
sizing hyperbolic gears with a linear contact between
their tooth surfaces, it is evident the necessity to control
the quality of meshing in the whole region of mesh or in
a definite part of this region [6, 7]. This approach based
on “the region of mesh” is obligatory because the plane
flanks have longitudinal orientation preliminary defined.

The mathematical models for synthesis based on region
of mesh are not universal. The specifics of each model
determines by the geometric and kinematic characteristics
of the concrete region of mesh.

The kinematic scheme of the considered gear-set is
shown in Fig. 1. There D1 and D2 are the reference sur-
faces of the gears that are surfaces of revolution with
axes of rotations 1–1 and 2–2, respectively: D2 is a
cylinder, D1 is an envelope of D2. This means that D1
and D2 are kinematically conjugate. We use the following
frames (Fig. 1): ( , , , )S O x y z  – stationary one;

( , , , ),i i i i iS O x y z  (i = 1, 2) – firmly connected with the
moving links i = 1 and i = 2 that rotate about the axes i–i,
(i = 1, 2) with angular velocities 1ω  and 2.ω

Let describe the equation of the active tooth surfaces
( )
2

jΣ  of the plane-teeth gear i = 2 in the frame S2 using
Fig. 1 (ϕ2 = 0):
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Fig. 1. Geometric and kinematic scheme of hyperbolic
gear pair type Wildhaber.
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where ( ) ,ju  ( )jτ  are the linear parameters of the active
tooth surface ( ) ;jΣ  ( )jα  is the profile angle of plane
teeth; r2 is the radius of the reference surface of plane-
teeth gear.

In equations (1) j = 1 refers to the conjugate surfaces
(1)
1Σ  and (1)

2Σ  when the gears rotate with angular veloci-
ties iω  (i = 1, 2) (Fig. 1) and the globoid Wildhaber
worm is the driving link. When the worm i = 1 is a driving
link, rotates with an angular velocity 1( )−ω  and forces
cylindrical gear i = 2 to rotate with an angular velocity

2( ),−ω  then the tooth surfaces (2)
1Σ  and (2)

2Σ  are in
contact.

For the parameters that take place in set (1) the
following conditions are true: ( ) 0ju >  for the tooth
addendum; ( ) 0ju <  for the tooth dedendum;

( )
2 2[ 0.5 , 0.5 ];j b bτ ∈ − ⋅ ⋅  (b2 is the cylindrical gear face

width); (1) (0, 0.5 ),α ∈ ⋅π  (2) ( 0.5 , 0).α ∈ − ⋅π
Writing the analytical expression of the region of

mesh of the synthesized gear pair requires defining the
equation of meshing. In the concrete case it is of the
form:
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where ( )
12

jV  is the velocity of the relative motion in an

arbitrary contact point P of ( )
1

jΣ  and ( )
2

jΣ  with coordi-

nates ( )
12, ,j

xV  ( )
12, ,j

yV  ( )
12,

j
zV  in the frame S; ( )

2
jn  is the

normal vector to ( )
2

jΣ  with coordinates ( )
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j
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in S.
Taking into account the constructions made in Fig. 1

the coordinates of ( )
12

jV  are:
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where 1 2( , )δ = ∠ ω ω  is the angle between the axes of
rotations 1–1 and 2–2. In (3) it is assumed that

1 1ω =  rad/s whence 2 21iω =  rad/s (ωi is the magnitude

of the vector ,iω  (i = 1, 2)). The coordinates of ( )
2

jn
and the coordinates ( ) ,jx  ( )jy  and ( )jz  of the contact

points of ( )
1

jΣ  and ( )
2

jΣ  in the stationary frame S are
described by the relations:
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Substituting (3), (4) and (5) in (2), the analytical
expression of the equation of meshing is:
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Mutual solving of equations (5) and the equation of
meshing (6) gives the contact lines of the active tooth
surfaces ( )

1
jΣ  and ( )

2
jΣ  of the globoid Wildhaber worm

and of the cylindrical plane-teeth gear in the stationary
space. They form the region of mesh of the synthesized
gear pair.

Analyzing (5) and (6) it is seen that the common
point M of the reference surfaces D1 and D2 of the gears
(globoid worm of type Wildhaber and of the cylindrical
plane-teeth gear) with coordinates ( ) 0,jx =  2

( ) ,jy r=
( ) 0,jz =  ( ) ( )

2( 0)j ju = τ = ϕ =  (Fig. 1), is not a com-

mon point of the active tooth surfaces ( )
1

jΣ  and ( )
2

jΣ  in
the most common case because of the fact that their
coordinates satisfy the equation of meshing (5) if the
condition

2 21 2( ) cos 0wa r i r− ⋅ δ + ⋅ = (7)
is fulfilled. It is possible only in one concrete case of
non-orthogonal globoid gear-pair of type Wildhaber
when the shaft angle 1 2( , )δ = ω ω(  is determined by

1
21 2 2cos ( ) .wi r r a −δ = ⋅ ⋅ −  It is clear that this value of δ

belongs to the interval (0.5 , 1.5 ).⋅ π ⋅π
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Therefore, excepted the case defined by (7) it is
impossible to define a pitch contact point (a pole of
meshing) and pitch circles respectively when considering
a hyperbolic gears of type Wildhaber with non-
orthogonally skewed axes. The mathematical model
under consideration defines the algorithm for basic
synthesis based on region mesh of the examined gear
type. The optimisation of their design needs the definition
of criteria controlling their quantative characteristics of
the whole region mesh. The optimization synthesis realises
by a control of the kinematics (respectively geometrical)
characteristics using some criteria that are presented
analytically bellow.

3. KINEMATIC  CRITERIA  FOR
OPTIMIZATION  ON  LOADING  CAPACITY

The contact hydrodynamic theory of lubrication as a part
of fluid mechanics aims at explaining the phenomenon of
mutual action both between solid bodies moving in a
fluid so as of solid bodies and the fluid. This theory takes
into account hydrodynamic and heat processes in the
lubrication film and the elastic deformations of the solid
surfaces being in contact. In the gear-drives the load is
carried by the conjugate tooth surfaces and by the lubri-
cation film between them. As a result a hydrodynamic
pressure between the tooth surfaces appears. The hydro-
dynamic elevating force balances the external forces
applied to the gears. At the same time, the hydrodynamic
pressure causes elastic deformation of the contacting
tooth surfaces that influences on the backlash configura-
tion between them. They define the character of the
diagram of the hydrodynamic pressure. Thus two mutual
connected problems – a hydrodynamic lubrication prob-
lem and a contact problem of elasticity are presented.
The paper does not give a mutual solution of the above
problems. The purpose is to suggest a quality estimate of
the influence of some characteristics (going in their basic
equations) on the gear pair loading capacity. A kinematic
approach to defining characteristics for estimating the
hydrodynamic loading capacity of the Wildhaber type
gearing is presented.

3.1. Singular points of first order

The analysis of the character and the position of the
contact lines in the mesh region is of great significance
before constructing the mathematical model for synthesis
based on the region of mesh. The presence of singular
points of first order on the contact lines yields to a
decrease of the efficiency and loading capacity of the
designed gears since in these points a semi-dry and dry
frictions can appear.

The so-called ordinary nodes are the points of contact
or of intersection of the contact lines. In such points the
oil film between the tooth surfaces breaks and the
pressure in it decreases.

The condition for existence of ordinary nodes in the
region of mesh of hyperbolic gears of type Wildhaber is:

( )( ) ( )
12 2

2
0.j jV n∂ ⋅ =

∂ϕ
(8)

Then taking into account (5) and (6) we obtain the
following analytical form of the line of ordinary nodes in
the stationary space:
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The equations (9) defined an ordinary nodes line in
the mesh region. The objective of the optimization syn-
thesis is the entire removal of singular points of first
order from the mesh region. This task can be achieved by
a suitable variation of the geometrical gear characteristics,
the dimensions of the active teeth surfaces, dimensions
of the crude metal for the gear wheels and so on.

3.2. A total circumferential velocity orientation
in the mesh region

The theory of hydrodynamics of the modern hyperbolic
gear-sets with a linear contact is not sufficiently worked
out. Although, one quality estimate could be the value of
the angle between the total circumferential velocity ( )jVΣ

and the tangent to the contact line in its arbitrary point.
In the concrete case it is the angle between ( )jVΣ  and the

straight-line ( )
,12

jD  that is the contact line relevant to a
definite parameter of meshing ϕ2.

First we define the position of an arbitrary contact
line ( )

12
jD  in the stationary frame ( , , , ).S O x y z  For each

parameter ϕ2, we will represent ( )
12

jD  as a common

straight-line of two planes: the tooth surface ( )
2

jΣ  and the
plane given with the equation of meshing. Taking into
account the set of equations (5) and (6) we represent the
region of mesh in the form:
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The first equation in (10) is the normal equation of
the plane ( )

,2
jΣ  and the second one is the equation

( ) ( ) ( )( , , ) 0.j j jf x y z =  Their normal vectors are:

2 2 2

( ) ( ) ( ) ( ) ( )
2 2 , , ,

( ) ( ) ( ) ( )
, , ,

(cos ,cos ,cos ),

(cos ,cos ,cos ).

j j j j j
x y z

j j j j
f x f y f z f

e n

e

Σ Σ Σ≡ α α α

α α α

Then the coordinates of the unit vector
( ) ( ) ( )

2
j j j

D fe e e= ×  of the contact line ( )
12

jD  are

( ) ( )
2

2 ( )( )
, 2 2 2 ( )

21
( ) ( )( )

, 2 2 2 ( )
21

( ) 21
, 2 2 2 ( )

21

( ,

sin sincos ,
(cos ) sin sin

sin sin coscos ,
(cos ) sin sin

cos
cos .

(cos ) sin sin

j j

jj
x D j

j jj
y D j

j
z D j

A

A
i A

A A
i A

i

i A

= α +ϕ

δ ⋅α =
δ − + δ ⋅

δ ⋅ ⋅α =
δ − + δ ⋅

δ −
α =

δ − + δ ⋅

∓

∓

∓

)

The upper (lower) signs in all equations refer to the
case when are mated ( )

1
jΣ  and ( )

,2
jΣ  when j = 1 (j = 2).

Let express the total circumferential velocity vector
using the notations in Fig. 1:
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Then the angle ( )j
ϕΩ  that the vector ( )jVΣ  forms with

the contact line of the gear-set of type Wildhaber is
calculated by:
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Improved conditions for hydrodynamic lubrication,
an increased hydrodynamic loading capacity respectively
are clearly observed if ( )j

ϕΩ  has a value close to 90°.

4. CONCLUSION

In the article are illustrated the most essential and spe-
cific geometric and technological characteristics and
related with them exploitation special features of the
globoid gear-set of type Wildhaber. The chosen approach
to mathematical modeling for the synthesis of the
examined hyperbolic three-links mechanisms when the
rotation axes of their moving links are arbitrarily skewed
has been grounded. An algorithm oriented to the analysis
and synthesis of these gear pairs is worked out: the active
tooth surfaces and the region of mesh are defined ana-
lytically, the singularity of the gear-set is studied (the
positions of the ordinary nodes are determined); algorithm
for determining the orientations of the total circumferential
velocity with respect to an arbitrary contact line is elabo-
rated. Computer program for their study and optimizing
synthesis on the basis of loading capacity is written.
Concrete patterns of these gears are calculated, design
and manufactured.
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