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Abstract: One aspect of this article is to improve the absolute accuracy of these systems by means of 
calibration techniques. This is to develop algorithms which adapt the initially perfectly regarded 
geometric parameters of the transformation equations relating joints coordinates to world coordinate to 
real robot’s structure. The parallel robots are used for fast and accurate positioning for fulfilling the 
increasing requirement in handling and assembly. 
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1.  INTRODUCTION IN PARALLEL ROBOTS 
 

1.1. Parallel robots versus serial robots 
 

 For industrial robots, there are generally two main 
types of the manipulators: serial manipulators and parallel 
manipulators, a parallel robot is a closed-loop mechanism 
in which the mobile platform is connected to the base by 
at least two serial kinematical chains (legs). Applications of 
this type of robots can be found in the motion platform for 
the pilot training simulators and the positioning device for 
high precision surgical tools because of the high force 
loading and very fine motion characteristics of the closed-
loop mechanism. Recently, researchers are trying to utilized 
these advantages to develop parallel-type robot based multi-
axis machining tools and precision assembly tools.  
 Conversely, they suffer from smaller work volume, 
singular configurations and a more complicated direct 
kinematical solution (which is usually not required for 
control purposes) [1]. 
 Unlike parallel robots (Fig. 1), a serial robot (Fig. 2) is 
an open-ended structure consisting of several links 
connected in series. The human arm is a good example of a 
serial manipulator. Presently, all the developed 
manipulators  have  more  or less the  same shapes.  As they 
 

 
 

Fig. 1. Delta parallel robot. 

 
 

Fig. 2. Vertical knick arm robot. 
 

are well-constructed machines, hence are often used in the 
industrial applications. However, as the actuator in the 
base has to carry and move the whole manipulator, with its 
links and actuators, hence it is a well-known fact that it is 
very difficult to realize very fast and highly accurate 
motions with such manipulators. As a consequence, there 
arise the problems of bad stiffness and reduced accuracy. 
 Based on the fact that the end-effector’s position can be 
defined by a point in space and that its orientation with two 
degrees of freedom can be described by a line from a first 
point to a second point in space, thus forming a joining 
element. It is clear that an end-effector with 5 degrees of 
freedom can be described by means of two points in space. 
Should six degrees of freedom be desired, then three points 
in space are necessary. 
 However, the increasing interest in parallel robots 
points to the potential embedded in this structure, which 
has not been yet fully exploited. The advantages of 
parallel robots as compared to serial ones are: 
 � higher pay-load-to-weight ratio since the payload is 
carried by several links in parallel; 
 � higher accuracy due to non-cumulative joint error; 
 � location of motors at or close to the base; 
 � simpler solution of the inverse kinematics 
equations.
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 � higher 
structural 
rigidity, since the 
load is usually 
carried by 
several links in 
parallel;1 
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Fig. 3. Known hexapod systems. 

 
 All three joints of an arm element can be motor driven 
but it is also possible to motorise only two or even just a 
single joint. The number of arm elements required for 
defined motion of an end-effector (or platform) for a given 
number of degrees of freedom, is dependent on the number 
of motorised (active) joints that each arm element possesses. 
 Fig. 3 shows some of the many possible configurations 
of parallel link machines. The development of parallel link 
kinematics is not new but has been intensively researched 
during the last two decades.[3]  
 All of the existing machines share one common 
characteristic – motion is generated by either arm length 
modification, positioning of the base points or a 
combination of both. If the position of a point in space is to 
be described by the end position of an arm element, then 
this arm element must have three degrees of freedom [5]. In 
order to realise this three degrees of freedom, the following 
possibilities present themselves: 
 − change in arm length; 
 − movement in arm base point; 
 − rotation around the arm base point. 
 These three types of motion result in six possibilities for 
arm kinematics as shown in Fig. 4. 
 1. Two kinematics with a single translational and two 
rotary joints. 
 2. Two kinematics with a rotary and two translational 
joints. 
 3. One kinematics with three translational joints. 
 4. One kinematics with three rotary joints. 

Kinematics for freely definable points in space 
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Fig. 4. All possible configurations of arms with 3 DOF. 

 
 Parallel robots belong to the closed change mechanism 
because they start and end at the base. In other words a 
design model for a parallel robot would only be the effort of 
designing one chain which is usually repeated 
symmetrically for the whole robot. On the other hand the 
design model of a serial mechanism is usually more 
complicated  since  its  links  are subjected to bending forces  
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Table 1  
Comparison between parallel and serial robots 

 

Parallel robots Serial robots 

  

  

  
 

 

• High payload-to-weight 
  ratio 
• High mechanical rigidity 
• Low moving mass 
• Higher accuracy, no 

cumulative error 
• Simple design of 
  Kinematical chains 
• Limited workspace 
• Adapted to specific 
  applications 

 

• Low payload-to-weight 
ratio 

• Low mechanical rigidity 
• High moving mass 
• Joint cumulative error 

(lesser accuracy) 
• Complex design of 

components 
• Large workspace 
• General purpose robot 

 
as well, which makes the design more complicated to 
insure the stiffness of the mechanism. 
 Table 1 shows a clear comparison between parallel and 
serial structure robots. Note in the first 2D structure the 
difference between the closed chain mechanism and the open 
chain mechanism.  
 A kinematical representation of both mechanisms can 
also be shown with respect to the type of joints connecting 
each link to the other [4]. However, the complicate 
structure of the parallel mechanism not only limits the 
motion of the platform but also creates complex kinematical 
singularity in the workspace of the mobile platform, and 
therefore, makes the design, trajectory planning and 
application development of the parallel robot difficult and 
tedious. 
 
1.2. Kinematical representation of Parallel robots 
 

 Kinematical representation of parallel robots shows in a 
simple way the kinematical structure of a parallel robot. Not 
all types of robots can be easily represented cinematically 
since there are other asymmetrical parallel robots with 
special applications which can not be represented 
cinematically like other symmetrical structures. 
Asymmetrical robots usually have their joints and 
mechanical chains distributed  in  a non-homogeneous  

Table 2  
Types of joints 

 

Passive Joints 
D3 Spherical joint 

D Revolute joint 
D2 Universal joint 
SS Prismatic joint 
DS Rotation/Translation joint 

 

Active Joints 
D3a Spherical joint 
Da Revolute joint 
D2a Universal joint 
Sa Prismatic joint 
DSa Rotation/Translation joint 

 
Passive joints 

 
               D3           D            D2       S                 DS 

Active joints 

 
           D3a         Da            D2a        Sa                DSa 

 
Fig. 5. Main different types of joints used in parallel robots. 

 
manner for example in different plans and at different 
orientation angles, which makes it hard to define the 
structure of the robot.  
 Compared to the clasical machine tool, the kinematics 
of the parallel manipulator is much more complex.  
 In general, the kinematics includes two aspects:  
 − forward kinematics; 
 − inverse kinematics.  
 Of particular interest here is that, whereas in serial 
mechanism, the forward kinematics problem is easy and 
the ineverse kinematics problem is challenging, the 
converse is true of parallel mechanism. 
 Mainly parallel robots can be represented with 
respect to the structure of their parallel mechanism. A 
parallel mechanics is a repetition of number of 
mechanical chains which are connecting the platform to 
the base. 
 There are two types of joints: passive joints and 
active joints as they are presented in Table 2. 
 Therefore, it is important to understand the notation 
of the different joints used which connect the links 
together to form the mechanical chain. (Table 3) 
 Fig. 5 shows the main different types of joints used in 
parallel robots to connect links together and form a 
mechanical chain. 
 

2.  DIRECT KINEMATICAL PROBLEM (DKP) 
 

 In recent years, a number of methods have been 
developed for the kinematical analysis of robot arms and 
mechanical manipulators.  Nevertheless,  the applications 
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Table 3 
Notation of different types of joints 

Name/Formula/DOF Kinematical structure diagram Description / each stage 
 

Delta robots 
 
 

3 (1, 2, 2) D D3 D3 
 
 

3 DOF 

 

 

 

 
Fixed base 

3(1) active revolute joints 
 

3(2) passive spherical joints 
3(2) passive spherical joints 

Platform 
 

Delta robot 
 
 

3 (2, 2, 2) D D3 D3 
 
 

6 DOF 

 

 

 

 
Fixed base 

3(2) active revolute joints 
 

3(2) passive spherical joints 
3(2) passive spherical joints 

Platform  
 

Hexapod type 3-3 
 
 

3 (2, 1, 2) D3 2S D2 
 
 

6 DOF 

 

 

 

 
Platform  

3(2) passive spherical joints  
 

6(1) active prismatic joints 
 

3(2) passive universal joints 
Fixed base 

 
Hexapod  type 3-6 

 
 

3 (1, 1, 2) 2D3 2S D2 
 
 

6 DOF 
 

 

 

 
Platform  

3(2) passive spherical joints  
 
 

6(1) active prismatic joints 
3(2) passive universal joints 

Fixed base 

 
Hexapod type 6-6 

 
 

6 (1, 1, 1) D3 S D2 
 
 

6 DOF 

 

 

 
Platform  

3(2) passive spherical joints  
 

6(1) active prismatic joints 
3(2) passive universal joints 

 
Fixed base 

 
of most of these methods are restricted to only serial 
robots. The few methods which deal with parallel robots 
(i.e. the robots with a combined closed loop and open 
chain structure) are also limited to specific robots with 
simplified structures. However, as the applications of 
parallel robots become more popular, and their structures 
become more complex, it is essential to have a systematic 
and efficient numerical method for analyzing the 
kinematical characteristics of general parallel robots. 
 One difficulty in analyzing parallel robots is that the 
driving mechanisms of the robot may contain many 
multi-degree-of-freedom (DOF) joints and several 
coupled, closed kinematical loops. Thus the local   
coordinate systems can not be assigned sequentially as 
with conventional serial robots. In addition, the 
displacement (or rotation) of the joint variables are 
constrained by the loop closure conditions.  
 The first sections of this paper deal with recursive 
coordinate transformation. 
 The other sections of this paper deal with the 
displacement analysis. A set of recursion formulae is 

used for efficient forward coordinate transformations. 
These formulae are derived based on the Rodrigues' 
formula for spatial rotation, and can be extended to 
handle various types of multi-DOF joints. A two-phase 
numerical algorithm for displacement analysis of general 
parallel robots is presented here. In the first phase of the 
algorithm, the displacement analysis problem is 
formulated as an optimization problem. A generalized 
cyclic coordinate descent (CCD) method is used for 
finding a good approximation of the solution vector. The 
second phase of the algorithm is based on the iterative 
method for displacement analysis of linkages. 
 It should be mentioned that there are certain available 
commercial software packages, such as ADAMS, DADS 
and SIMPACK, which may also be used for the 
numerical kinematical analysis of general parallel 
robots [2].  
 The algorithm used in this work is based on the 
relative coordinate formulation and the direct application of 
the loop closure conditions. Hence, the size of the data 
structure and the required computations are significantly 
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reduced. Consequently, it can be executed efficiently 
on small computers, such as a personal computer. 
 
3.  FORWARD COORDINATE 

TRANSFORMATION 
 

 Once the structure has been defined, the coordinate 
systems attached to the robot can be defined as follows. 
Each link is attached with ld local coordinate systems, 
where is the total number of joints incident to the link.  
 The origins of the coordinate systems are located at 
the centres’ joints with the unit vectors along the 
coordinate axes denoted as Xj, Yj, Zj if joint j is an 
outlet joint of the link, and as Uj, Vj and Wj  if it is an 
inlet joint.  
 Therefore, each joint of the robot is associated with 
two coordinated systems, since if it is an outlet joint of 
one link then it must also be an inlet joint of another link. 
 
4.  LINK TRANSFORMATION METHOD 
 

 The relationship between coordinate systems (Uj Vj 
Wj) and (Xj Yj Zj) attached to link l is shown in Fig. 6 
Here, Tij is a unit vector along the common normal line 
between axis Wi and Zj and is directed from Wj to Zj ; aij   
is the signed distance  from Wi to Zi and αij   is the angle 
between Wi and Zi measured counter clockwise (ccw) 
about Tij .  
 Similarly, bij  is the signed distance from Tij to Xj, and 
βij is the angle between Tij and Xj measured ccw about Zj.  
 Finally, cij is the signed distance from Ui to Tij  and γij  
is the angle between Ui and Tij  ccw about Wi. The six 
constant parameters aij , bij, cij , αij , βij , γij are referred to 
the shape parameters of the two coordinate systems. 
 Based on the Rodrigues' formula for spatial rotation 
and the shape parameters defined previously, 
the orientation and position of coordinate system (Xi 
Yi Zi) with respect (Ui Vi Wi) can be computed by using 
the following steps: 

 Step 1: Obtain Tij  by rotating Uij  about Wi with 
angle γij . Noting that Vi = Wi × Ui , and Ui ⋅ Wi = 0, we 
have  
 

 Tij  =Ui cos γij  + Vj sin γij . (5.1) 
 
 Step 2: Obtain Zj by rotating Wi about Tij  with 
angle αij . Since   Tij ⋅ Wj = 0, thus 
 

 Zj = Wi cos αij   +(Tij × Wi ) sin αij. (5.2) 
 

 Step 3: Obtain Xj by rotating Tij  about Zj  with 
angle β ij . Since Tij ⋅ Zj = 0, thus 
 

 Xj = Tij cos βij   +(Zj × Tij ) sin βij. (5.3) 
 
 Step 4: Yi is simply the vector cross product of Zi 
and Xi thus 
 

 Yj = Zj × Xj. (5.4) 
 
 Step 5: Compute the position vector Pij  from 
 

 Pij=cij  Wij  + aij Tij  + bij  Zj . (5.5) 

 These expressions have a recursive character and 
they represent the base for the transformation of the 
coordinate. 
 
5.  JOINT TRANSFORMATION METHODS 
 

 The recursive relation of the coordinate systems 
between two neighbouring links can also be easily 
derived by using the Rodrigues' formula. For instance, 
the common characteristic revolute, prismatic and 
cylindrical joint is that they only have one joint axis 
to allow relative motions between the jointed links. 
The joint axis is thus conveniently aligned with the Zj  
and the Wj  axes, as shown in Fig. 6. 
 The recursive relation between the two coordinate 
systems (Uj Vj Wj) and (Xj Yj Zj) can be obtained as: 
 

 

Wj = Zj, 

Uj = Xj cos θj + Yj sin θj, 

Vj = Wj × Uj, 

                        Pj =  Sj ⋅ Zj. 
 

 Where θj is the angle between axes Xj and Uj, 
measured ccw about Zj, and Sj is the signed distance 
from Xj to Uj measured along Zj. Noting that if joint j is a 
cylindrical joint, then both θj and Sj are the joint 
variables. If joint j is a revolute joint, then θj is the joint 
variable and Sj is equal to zero. The reverse is true if it is a 
prismatic joint. 
 

 
 

Fig. 6. Definition of local coordinate systems. 

 

 
 

Fig. 7. Revolute, prismatic and cylindrical joints. 
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Table 4 

Joint variables of multi-DOF joints 
 

Recursion Formulae and Variables of Multi – DOF Joints 

Universal Joint Spherical Joint 
Wj = Xj cos θj1 + Yj sin θj1 

Uj = Xj cos θj2 +( Wj × Zj )  

 sin θj2 

Vj = Wj × Uj 

Rj = Zj cos θj2 + Yj sin θj1 

Wj = Zj cos θj2 +( Rj × Zj ) sin θj2 

Uj = Rj cos θj3 +( Wj × Zj ) sin θj2 

Vj = Wj × Uj 

Joint Variable 
θj1 , θj2 θj1 , θj2 , θj3 

 

 
 

Fig. 8. Universal joint. 
 

 
 

Fig. 9. Spherical joint. 
 
 By using the same methodology, the recursion 
formulae for other types of joints can also be derived, 
since most of them can be considered as combinations of 
the revolute and prismatic joints. For example, a Hooke-
type universal joint can be considered as two 

perpendicularly intersecting revolute joints  and  a  
spherical  joint  can  be modelled as three 
mutually orthogonal intersecting revolute joints, as shown 
in Figs. 8 and 9 respectively. The recursion formulae and 
the joint variables for these joints are given in Table 4. 
 
6.  CONCLUSIONS 
 

 Usually the parameter identification process leads to 
systems of nonlinear equation which need to be solved. 
By reducing the number of parameters, convergence rate 
of this process may be improved. However, due to highly 
nonlinear relationships it is not possible for parallel 
robots to determine if there are parameter variations, 
which may be neglected because of minor influence on 
the absolute pose accuracy. A simulation system shall be 
developed, which is intended to determine the influence 
of geometric parameter variation on the absolute 
accuracy of parallel robots. 
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