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PERFORMANCE IMPROVEMENT OF A CLASS OF POSITION DRIVES  
 

Tsolo GEORGIEV, Mikho MIKHOV 
 
 

Abstract: The performance of a precise DC motor position drive is discussed in this paper. A new ap-
proach to control of such drives is introduced. Using a discrete vector-matrix description of the con-
trolled object, an optimal modal state observer has been synthesized, as well as the respective optimal 
modal controller. Detailed study of position drives has been carried out by means of computer simulation 
for the dynamic and static regimes at various loading and work conditions. Some results are presented 
which show that the applied method of control can provide the desired performance.  
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1. INTRODUCTION  
 

 A number of precise industrial applications, such as 
manipulators, robots, machine tools, etc., require high 
quality position control, without overshoot at maximum 
rate.   
 Such performance can be provided by a cascade con-
trol system, including a non-linear position controller 
with shifting structure [1]. Similar controller provides for 
maximum deceleration pace, but approaching the refer-
ence position, its gain should be limited in accordance 
with the condition of lack of overshoot. This, on the 
other hand, leads to some deterioration of the control 
system dynamics.  
 A new approach to solving this problem has been 
suggested in this paper, applying optimal modal control 
[2, 3, 5]. 
 The procedure utilizes a combination between both - 
setting the closed-loop system poles (modal control) and 
optimal control through the quadratic quality criterion 
minimization, i.e. in this case a complex criterion for 
optimization has been introduced. 
 This paper discusses main problems concerning op-
timal modal control of precise DC motor position drives. 
Detailed study carried out by means of modeling and 
computer simulation shows that this type of control can 
provide the desire performance. 
 
2. MODEL OF THE CONTROLLED OBJECT 
 

 The controlled object is an electromechanical system 
which consists of a four-quadrant transistor chopper and 
a permanent magnet DC motor. This configuration is 
shown in Fig. 1, where the following notations have been 
used: UR – uncontrollable rectifier; PWM – pulse width 
modulator; C – filter capacitor; T1 T4 – electronic 
switches; D1  D4 – freewheeling diodes; M – motor; 
PE – position encoder; L – Load;  – DC link voltage; 

 – angular position; 

÷
÷

dcV
θ T  – motor torque;  – load 
torque.   

lT

 The basic parameters of the controlled object are as 
follows:  

 
 

Fig. 1. The controlled object under consideration. 
 
 - armature circuit resistance ;  Ω 61.0=aR
 - armature inductance ; H 003.0=aL
 - back EMF coefficient ;    V.s/rad 191.0=eK
 - torque coefficient  Nm/A  191.0=tK ; 

 - total inertia ; 2kg.m  0043.0=J
 - amplifier gain of the chopper ; 16.3=cK
 - armature circuit time-constant ;  s  005.0τ =a
 - electromechanical time-constant ; s  072.0τ =m
 - position encoder gain: . imp/rev  000 6
 The rated data of the used permanent magnet DC 
motor are:  

V, 30rat =V  A, 7.15rat =I  . rad/s 19.115ωrat =

 The state-space model of the controlled object is as 
follows: 
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where:  is motor speed;  – armature current of the ω i
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motor;  – chopper controlling code;  – armature cur-
rent, which is determined by the respective load torque. 

u li

  The following notations of state variables have been 
adopted: , , θ1 =x ω2 =x ix =3 . Measurable coordinate 
in this case is the angular position , i.e.  θ
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 The discrete state-space model of the controlled ob-
ject can be represented as follows: 
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  In order to use the quadratic quality criterion in the 
process of synthesis, the error of e )(θ)(θ kkr −= , 
should be formulated, where  is the reference posi-
tion.   

)(θ kr

 It is assumed that both the reference and disturbance 
inputs are constant, i.e.  and const)(θ =kr const=li . 
The following equation concerns the error and state vari-
ables, which are not outputs [2]: 
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 Eq. (3) has been used for the synthesis of both an 
optimal modal digital observer and the respective state 
controller.  
 Based on this equation the model of the controlled 
object has been developed, shown in Fig. 2.  

 
 

Fig. 2. Model of the controlled object. 
 
3. SYNTHESIS OF THE CONTROL SYSTEM  
 

3.1. State observer  
 Synthesis of the digital observer has been realized by 
an algorithm presented in [3]. This procedure utilizes the 
transpositioned additional object [4]:  
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 The  matrix eigenvalues are determined solving 
the following equation: 

T
eA
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 At quantization period of  the following 
eigenvalues are obtained:  

001.0=T

 
.8284.0;9851.0;1;1 4321 =χ=χ=χ=χ  

 
 In this case there are two undesired roots of the open-
loop system ( 11 =χ  and 12 =χ ), which must be displa-
ced.  
 Locations for the closed-loop system roots 1.01 =μ  
and 2.02 =μ  are defined, where  and  should be 
placed. The locations of 

1χ 2χ

3μ  and  are the same as in 
the open-loop system, i.e. 

4μ

33 χ=μ  and μ . 44 χ=
 In order to define the observer  matrix, it is neces-

sary to find the elements of  and  eigenvectors 
corresponding to 

H
1q 2q

1χ  and 2χ , respectively.  
 The eigenvector is obtained solving this system of 

homogenous algebraic equations:  
1q

 
 1for ,0 ==−  i)χ( iie qIA . (8) 
 
 For the elements of both eigenvector  and weight 1q
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matrix  the following is obtained: 1Q
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 These products are computed: 
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 Weight coefficient  and the 1235.01 =r 1111.11 =λ  
coefficient are calculated. 
 After the first iteration, for the optimal modal feed-
back gain the following is obtained:  
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 In order to displace  to location , the new sys-
tem with a state matrix should be optimized: 
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 The  eigenvector is derived after solving the fol-
lowing system of homogeneous algebraic equations: 
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 For the elements of eigenvector  and weight ma-
trix Q  respectively, the following is obtained: 
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 The following products are computed: 
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 The respective weight coefficient  and 
the 

1727.02 =r
25.12 =λ  coefficient are calculated. 

 After the first iteration, for the optimal modal feed-
back gain the following is obtained:  
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 Since in this case there are two undesired values 
( 11 =χ  and 12 =χ ), the optimal modal feedback gain  
becomes: 
 

[ ]0072070121 .. −−=+= γγγ . 
 

  The observer feedback vector is formulated: 
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 The observer equation is as follows [4]:  
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where )(ˆ)()( kkke xCy −=Δ . 
 
 These equations produce the state variables valuation. 
Based on them the optimal modal observer has been de-
veloped. Block diagram of the observer model is shown 
in Fig.3. 
 
 

3.2. State controller  
 Synthesis of the optimal modal controller has been 
realized by an algorithm described in [2]. In this case 
synthesis is carried out based on Eq. (3). 

]  
 At quantization period of  for the matrix 

 eigenvalues, the following is obtained:  
001.0=T

eA
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Fig. 3. Model of the optimal modal observer. 
 

.1;1;9851.0;8284.0 4321 =χ=χ=χ=χ  
  
 Among these values two undesired roots exist 
(  and ), which should be displaced.  13 =χ 14 =χ
 Locations for the closed-loop system roots 

 and  are defined, where   and 98.03 =μ 1.04 =μ 3χ 4χ  
should be placed. The locations of  and  are the 
same as in the open-loop system, i.e. 

1μ 2μ

1 1χ=μ  and 
. 22 χ=μ

  In order to determine the optimal modal controller 
matrix K , it is necessary to find the elements of the 
eigenvector , corresponding to , as well as the 
eigenvector , corresponding to . 
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 The  eigenvector is obtained after solving the fol-

lowing system of homogeneous algebraic equations: 
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 The optimal modal feedback gain is determined: 
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 At the second iteration, the optimal modal feedback 
gain becomes:  
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 Since there are two undesired values ( 13 =χ  and 

14 =χ ), the optimal modal feedback gain is: 
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  The feedback vector obtains this form: 
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and control of the following type is formulated: 
 

exkexkexkexkkekeu 44332211)()( +++== Kx . (14) 
 
 After substitution of  in Eq. (4), for the optimal 
modal controller this expression is obtained:   
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 Analyzing Eq. (15) it can be seen, that the optimal 
modal controller includes an integral component into its 
structure. This means that when the driven mechanism is 
far from the reference position, the integral component 
would increase at each controlling cycle. This would 
quickly bring to saturation of the control loop. As a re-
sult, the motor will be supplied with maximum voltage. 
When the controlled mechanism approaches the refer-
ence position, the integral component will continue to 
increase and will become the dominant part of the control 
signal, forcing the drive to exceed the set position.          
 To solve this problem it is necessary to provide the 
following condition: when the mechanism enters some 
preliminary set range ( θ− )θ=θΔ rs

sθΔ

, control signal is 
established to the maximum admissible value of , 
after which this error of  is processed. 
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 Based on these considerations, as well as on Eq. (15), 
the model of an optimal modal controller has been con-
structed. It is represented in Fig. 4.  
 Overtaking current limitation has been applied. The 
respective function is as follows:   
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where:  is the current limitation initial code; – 
scale coefficient. 
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 Hence, the control condition in the presence of 
current limitation will be:  
 
 

 
 

Fig. 4. Model of the optimal modal controller. 
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 In real systems the limitation set on the control signal 
should also be taken into account:  
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where is the maximum value of the control signal.  maxu
 The controlling code, which should be applied to the 
chopper control scheme, is determined by conditions (17) 
and (18).  
 In accordance with these equations the current limita-
tion model is composed, and it is shown in Fig. 5. 

 

 
 

Fig. 5. Model of the current limitation. 
 

 
 

Fig. 6. Model of the position drive system under consideration. 
 
 Practically, the optimal modal control is achieved 
through consequent realization of Eqs. (14), (15), (16), 
(17) and (18). 
 
4. DRIVE SYSTEM PERFORMANCE ANALYSIS  
 

To prove the offered control algorithm functionality a 
computer simulation model has been developed, using 
the MATLAB/SIMULINK software package. The block 
diagram of the drive model is represented in Fig. 6. 
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Fig. 7. Time-diagrams illustrating the drive performance. 
 
 Detailed  study  of  the positioning system under con- 
sideration has been carried out for the dynamic and static 
regimes at various loading and work conditions.  
 Fig. 7 shows some results illustrating the performance 
of the drive system.  The reference angular positions are 
as follows:  (Fig. 7a);  (Fig. 
7b);  (Fig. 7c).  

rad  25=θr
rad  1000

rad  100=θr
=θr

 The reference static current is equal to the rated value 
of , and the motor speed is limited to the 

rated value of 

A 7.15rat =I

rad/s 19.115rat =ω .  
 During the respective transient regimes the armature 
current is limited to the maximum admissible value of 

A 25.39 max =aI , which provides good dynamics of the 
drive system.  
 
5. CONCLUSIONS 
 

An approach to control of precise DC motor position 
drives is introduced in this paper. 

The main features of such drive with optimal modal 
control have been described and discussed. The synthesis 
of the respective control system implements a combina-
tion between both - poles setting of the closed-loop sys-
tem (modal control) and quadratic quality criterion mini-
mization (optimal control). 

Detailed study has been carried out by means of 
modeling and computer simulation for the respective 
transient and steady state regimes of operation.  

The analysis shows that the represented control 
method provides good performance, which makes it suit-
able for a variety of industrial applications. 
 The developed simulation models as well as the re-
sults obtained can be used in the design of precise posi-
tion drives. They can also be successfully applied in the 
process of teaching about such types of positioning sys-
tems.  
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