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Abstract: In the design process the choice of materials for a new product is made from a very large 
spectrum. In practice the rigorous methods of materials' classification are made according to their 
attributes. Based on the principal component analysis, the observable variables are related only to a few 
artificial factors. The retained variance of the original cloud of different materials is maximal by this new 
representation. The Jöreskog' technique is used for the dimensional reduction in a bivariate subspace for 
a family of materials.  
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1. INTRODUCTION  
 

“The goal of design is create products that perform 
their function effectively, safely, at acceptable cost” 
(Ashby, 1999) [1]. 

The choice of a material for a product is not based on 
all the attributes, is based on a combination of properties. 
In this paper it is presented a method of reduction of 
attributes to a combination of a few artificial factors.  

The selection of the materials group is based on the 
following premises: 

– the taking into consideration of an ever larger 
spectrum of materials, otherwise expressed, defining as 
complete as possible the selection range;  

– the division of materials in "equivalence classes" 
otherwise expressed as the classification of materials thus 
obtaining a significant reduction of the selection space, 
the initial chaotically multitude is reduced to smaller 
number of classes, the number of each class having 
common properties, processes accompanied or not by the 
elimination or some materials taken into consideration;   

– the establishing of the same simple and efficient 
methods of selection, with the possibility of 
implementing on a computer.  

A possibility of getting down the properties range is 
the taking into consideration of the correlation between 
the properties, studying thus only a few independent 
properties to the possible extent.  

The introduction of the up-to-date calculation enables 
the data stocking concerning the properties, from the 
standard version, under the normal temperature and the 
time t = 0, up to more complete versions, taking into 
account their variability as against the temperature, time, 
etc. [3]. 

An inventory of materials is necessary to be made in 
paral1el, considering even the technological versions of 
the materials obtained for example by settling (dying, 
galvanizing, diffusion, platting, etc.). 

The classification of materials is often empirically 
made, for example in six groups [2, 3] metallically 
materials, polymers, elastomers, glasses, ceramics and 
compound materials. Another variant [3] uses as criterion 

the cristallinity of materials (crystalline or non-
crystalline and compound) each class being grouped in 
underclasses as per the structure type, way of obtaining 
etc. This classification can be developed in underclasses 
of common materials (cast irons, steels, aluminum alloys, 
etc.) and is extended to the types from each of the 
underclasses [4]. 

From all those herein above, its results the need of 
substantiating of some rigorous analytical methods of 
materials’ classification according to their properties. 
 
2. DISPLAYING MATERIAL PROPERTIES 
 

The properties of engineering materials have a 
characteristic span of values. The span can be large: 
many properties have values which range over five or 
more decades. Upon Ashby one way of displaying this is 
as a bar-chart like that of Fig. 1 for thermal conductivity 
[1]. Each bar represents a single material.  

The length of the bar shows the range of conductivity 
exhibited by that material in its various forms. 

The materials are segregated by class. Each class 
shows a characteristic range: metals have high 
conductivities; polymers have low; ceramics have a wide 
range, from low to high. 

Much more information is displayed by an alternative 
way of plotting properties, illustrated in the schematic of 
Fig. 2 [1]. 

Here, one property (the Young’s modulus, E, in this 
case) is plotted against another (the density, ρ) on 
logarithmic scales.  

The range of the axes is chosen to include all 
materials, from the lightest, flimsiest foams to the 
stiffest, heaviest metals. It is then found that data for a 
given class of materials (polymers for example) cluster 
together on the chart; the sub-range associated with one 
material class is, in all cases, much smaller than the full 
range of that property.  

Data for one class can be enclosed in a property 
envelope, as the figure shows. The envelope encloses all 
members of the class.
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Fig. 1. Bar-chart display of materials properties. 
 

 
 

Fig. 2. Bidimensional plotting of materials properties. 
 

3. AN APPLICATION OF PCA BASED ON 
JÖRESKOG METHOD 

 
Principal component analysis (PCA) is a standard 

technique to reduce multivariate data sets to lower 
dimensions [5].  

The number of observable attributes gives the 
dimension of the initial vector space of the objects. The 
PCA model represents the objects in view in a strictly 
subspace [6].  

Instead of reale attributes the PCA proposes new 
factors, but artificial ones, so that the subspace yields the 
minimum deformation of the original cloud. In the 
present paper the dimensional reduction for a family of 
materials uses the Jöreskog' method [7, 8].  

Let us consider X as a 6×9 dimensional matrix, 
attributes/materials constructed for the first six attributes 
from Table 1 [9].  

The standardized matrix associated with X is matrix 
Z. 

 
Table 1 

 Properties and materials for sliding bearing [9] 
 

Materials Alloys on 
the basis of 

Bronze 
on the basis of 

Aluminum 
Alloys 

Porous sintered 
bearings Plastics Artificial 

carbon 
Properties Lead Tin Lead Tin Al     
Sliding 
properties 1 2 3 3 3 2.5 3.5 4 4 

Embeddability 1 2 3 3 3 2.5 3 4 5 
Emergency 
running 
(antifrictionnal) 
properties 

1 2 2 3 2 2 1 1 1 

Loadability 4 3 2 2 2 2 3 4 5 
Heat conduction 
/thermal 
expansion 

4 4 3 3 3 2 4 5 5 

Corrosion 
resistance 5 3 4 3 2 2 3.5 3 2 

Minimal or dry 
lubrication 2 3 4 5 4 3 1 1 1 
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which is the correlation matrix. The proximity between 
attributes is expressed in terms of correlations. 

The inverse matrix of R is:   
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it obtains: 
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Jöreskog's method considers that theoretical 
covariance matrix of the standardized attributes, V, is 
factorized as: 
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For the uniqueness of the estimators of the matrices 

from the decomposition of V it is supposed that the 

variances are direct proportional with the inverse values 
of the diagonal elements of the matrix V-1; that is: 
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where m is the proportional parameter.  
Further on, it is denoted by R* the following matrix:  
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The eigenvalues [10] of this matrix are given in the 

able 2 and the first two eigenvectors in the Table 3. T
Because: 
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654321
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it can be considered only the 2-dimensional subspace.  

An estimator for the parameter m is the average of the 

 
remained eigenvalues: 

5071.1)(1
+= λm)

4 6543 =++ λλλ . 
 

The parameters of interest are the varia es, given 
y: 

nc
b

6.1,2 ∈= ims
riii

)
 ,                         (5) 

 
where rii is the element ii of the matrix R-1. 
 

Table 2 
 Eigenvalues of the matrix R* 

 

Eigenvalues 
λ1 = 88.19 
λ2 = 36.92 
λ3 = 3.63 
λ4 = 0.25 
λ5 = 2.14 
λ6 = 0.84 

 
Table 3 

The values of the first two eigenvectors of the m trix R
 

a * 

v1 v2 

− 0.634262594 0.321658498 
− 0.676926524 0.175405541 
0.091808859 0.298073488 
− 0.276539771 − 0.76157364 
− 0.219542078 − 0.428352389 
0.079872452 − 0.115934142 
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In the next step it is obtained the loading matrix: 
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It results: 
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which confirm the correctness of the mode

Table 5 

Values of  s 2 
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The first part of 
onsiderations concerc

ection in design process. Further on the Ashby’ idea to 
visualize the materials properties as bidimensional charts 
is developed for a wider range of properties. 

A possibility to reduce the number of attributes of 
materials in the design is the PCA mode

eskog’ method. 
In the present research it is used a bivariate artificial 

subspace for the co
ibutes of each object can be expressed with a good 

precision as function of artificial axes.  
The application of this model will simplifies the 

materials design and there are many
ensions in the design process. Further more, a mixture 

between Jöreskog' method and materials design 
principles is useful through future developments.  
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