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PREFERENCES, UTILITY FUNCTION AND CONTROL DESIGN
OF COMPLEX PROCESSES

Yuri PAVLOV !

Abstract: Expected utility theory is one of the approachesafsessment and utilization of qualitative conaapt
information. The expected utility approach allowstfte expert preferences to be taken in considenaith complex
biotechnological systems and problems. The exdues are not directly oriented towards the partizuproblem
and as a result, people express substantial uniceytabout their preferences. The topic of thischetis recurrent
stochastic algorithms for evaluation of expertitieb. A prototype of a value-drivatecision support system is dis-
cussed. The dialogue between the expert and theutenmp modeled numerically. An example of comptaxrol
design based on the evaluated utility is demorestrat
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1. INTRODUCTION

The elaboration and the utilization of models of hu
man behavior and the incorporation of human prefe-

Context Action Results

rences in complex systems are a contemporary trend P U(X4)
the scientific investigations. The aim is to deyelteci- U(X

. e I " (X2)
sion making with a merger of empirical knowledgeb(s
jective preferences) with the mathematical exastnes

People preferences contain characteristic of uaiceyt U(Xn)

due to the cardinal type of the empirical expefbrima-
tion. The appearance of this uncertainty has stisgec
and probability nature. Decision making under utaipf
ty is addressed in mathematics by Probability theord
expected Utility theory. These two together arevknas
decision theory. The Utility theory deals with tlea-
pressed subjective preferences.

The necessity of a merger of empirical knowledge
with mathematical exactness causes difficultiessibie
approach for solution of these problems is thelstistic
approximation [10 and 11]. The uncertainty of thb-s
jective preferences could be taken as a noisectihatl
be eliminated as typical for the stochastic a| ion
procedures. g e u(p) = Au(x), P=(Py PzrssPe-Pa). B =1 (1)

The objective of this paper is to present comfdetab i i
tools and mathematical methodology that are udeful
dealing with the uncertainty of human behavior and We denote with jpsubjective or objective probabili-
judgment in complex control problems. An example isties which reflect the uncertainty of the finaluks
presented as a mathematical description of theeisyst The strong mathematical formulation is the follow-

Fig.1. Utility function application.

and choice. This activity is motivated by a teclogital
objective which possibly includes economical, shcia
ecological or other important characteristics.

A utility function u(.) assesses each of this final
sults &, i =1 +n). The DM’s judgment of the process
behavior based of the DM’s choice is measured ¢faant
tively by the following formula:

“technologist, fed-batch cultivation process”. Tdialo- ing. LetZ is a set of alternatives aftis a subset of dis-
gue “decision maker (DM) — computer” realizes a ma-crete probability distributions ovet. A utility function
chine learning on the base of the DM’s preferences. is any function u(.) which fulfils:

2. PREFRENCES BASED UTILITY, (ta, (p, q)0OP?) < (Ju(.)dp >fu(.)dd), (p, TP%. (2)

FORMULATIONS AND EVALUATION

Standard description of the utility function apphc The DM's preference relation ovér (ZOP) is ex-
tion is presented by Fig. 1. There are a varietfirdl  pressed by(t). Its inducedindifference relation [) is
results that are consequence of the expert or DMitgc defined thus: §0y) = —( (xty) D(dy)), (x y)OZ?). We

1 denote with fu(.)dp) integration based on the probability
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tive and asymmetric one [2 and 10]. We mark thietgt
“appearance of the alternativewith probability a and
appearance of the alternative y with probability}l’ as
<X, Y, a>. It is assumed that an utility function u(.) egist
and that is fulfilled (@, p)OP? = (ag+(1-a)p)OP, for
Oa 0O[0,1]). These conditions determine the utility func-
tion with precision up to an affine scale (intergahle),
u()0ux(.) = us()=aw(.)+b, a>0[2, 6, 10].

The following notations will be used
A={(axy.2)/@u(x)+(1-a)u(y))>u(z)} and
B.={(a,x,y,z)/(@u(x)+(1-a)u(y))<u(z)}.

The next proposition is useful.

PROPOSITION 1: If A=Ay, than uy(.)=au(.)+b,
a>0[10, 11}

The expected DM utility is constructed by pattern-
recognition ofA, and B, [10]. The following presents
the procedure for evaluation of the utility functics:

The DM compares the "lottery®x,y,a> with the al-
ternative z, ZZ ("better-# f(x,y,za)=1", "worse-7,
f(x,y,za@)=-1" or "can't answer or equivalent
f(x,y,za)=0", f(.) denotes the qualitative DM answper
The DM relates the “learning point” (x,y@)) to the set
Ay with probability Di(x,y,z@) or to the seB, with prob-
ability Dy(x,y,z@). The probabilities Bxy,z@) and
Dy(x,y,z¢) are mathematical expectation of f(.) ov&r
and B,, respectively, Bx.y,ze)=M(f/x,y,za), if
M(f/x,y,za)>0, Dy(x,y,z@)=-M(fIx,y,za), if
M(f/x,y,za)<0. Let D'(x,y,zg) is the random value:
D'(xy,z@)=Di(x,y,z@), M(fIxy,za)>0; D'(x,y,za)=
-Dy(x,y,za),M(f/x,y,za)<0;D'(x,y,z,a)=0,M(f/x,y,za@)=0.
We approximate D'(x,y@) by a function of the type

Gxy,zm=(ag()+(Z-a)g(y)-9(2).where(x) =) GAH(¥

and (®;(x)) is a family of polynomials. Then the function
g(x) is an approximation of the utility u(.).

The functionf(.) (DM answers) fulfills the following
conditions [10]:

f=D'+&, M(§/x, Y, z o) = 0,M(E%/x, y, za) < d, dOR. (3)

It is assumed thai(.) is a “summable” function and
that u(x) =) r®;(x), riOR, where(®,()) is a family of

Ly i

polynomials. The following notations (based Ag) will
be used:t = (x, y, za), EGi(t) = Yix, vy, z, a) =
ad;(x)+(1-0)D;(y)-Pi(z). The next stochastic algorithm
realizes the evaluation procedure [10, 11]:

cMloen +Vn[ f tM*ly_cn, W (’[”*1))} qu (t"*) (4)
Zyn:+oo,2ynz<+oo,Dn,yn>OD

The coefficientsc" take part in the decomposition

N
g"(x) = Z c"®. (X) and €" (1)) is the scalar product
i1
(e, ¥(t) =ag'(x) +(1-a)g'(y) - 9(2) =G'(x y.z.a) -
The line above§=(cn,‘+’(t)) meansy=1 if y > 1,
y=-1ify<-1andy=y if -1 <y < 1. The function
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G"(x, v, z q) is positive overA, and negative oveB,
depending on the degree of approximatio®{Kk,y,z ).
The functiong’(x) is the approximation of the empirical
DM utility. The convergence of the procedure is ana-
lyzed in [10]:

THEOREM: Let (t}, ...,t"....) is a sequence of indepen-
dent random vector8 = (x, y, z, a) ( procedure (4)) set
with distributionF,, and let the sequence of random val-
ues  §.8%.%8".) satisfies the  conditions:
M(E"(xy,z0),c™Y = 0, M(EMZ(xy.z0),c™) < d, dOR
(formula (3)). Let the norm o#(t) is limited by a con-
stant independent froitn The next convergence follows
from the recurrent procedure (4):

6y

3 (G yz,0)=M( [G-D'(®)dy)=
D'(t)
Gn(t) S(t)

[([@-D@®)dy)dr, OEP— inf [ ([ (y - D'®)dy)dF.

0w 0

Here p.p. denotes “almost sure” and M is mathemati-
cal expectation. The functions S@®s(x)+(1-a)s(y)-s(z)
belong to L, (defined by the probability measure gf)F
The convergence in other notations is

“D'(x, Y,Z,0) —E”(x, y,z,a)“ L P min.

The proof bases on the “extremal” approach of the
potential functions method (kernel trick) [10, 11].
This stochastic evaluation limits the so callesttainty
effectandprobability distortionsidentified byKahneman
andTversky[5]. In addition, utility dependence on prob-
ability can be assessed directly with the propgeede-
dure. For this purpose we can search for an apmaoxi
tion of the kind u(x), a0[0, 1], xdZ, following Kahne-
manandTversky The explicit formula of the utility func-
tion in this case is:

u(x) = j u(x,a)da -

0

The learning points ((x,y,@), f(x,y,za)) are set with
a pseudo random Lgequence [10, 13].

The proposed assessment procedure and its modifica-
tions are a machine learning approach [10]. Thepzdm
er is taught to have the same preferences as the(iv
experience is that the DM is comparatively quick in
learning to operate with the procedure (128 learnin
points and DM answers for about 45 minutes).

3. PREFERENCES AND UTILITY EVALUATION
OF A COMPLEX CULTIVATION PROCESS

The complexity of the biotechnological fermentation
processes makes difficult the determination ofahgm-
al process parameters. The incomplete informatsurald
ly is compensated with the participation of impseci
human estimations. Our experience is that the human
estimation of the process parameters of a fernmientat
process contains uncertainty in the frames of 10% t
25%. Here is proposed a mathematical approachlifor e
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mination of the uncertainty in the DM preferencesl a
for precise evaluation of the optimal specific gtwate
of a fed-batch fermentation process.

The specific growth rate of the fed-batch processes
determines the nominal technological conditions T8je
fed-batch fermentation process is dynamically desdr
by the model of Monod-Wang [8, 14]:

. F
X = uX —-—X,
AR
. F
S=-kpuX +(So-S)—,
\Y

. S

=m — M), 5
M U%(KS+S) H) (5)
V =F,

. F
E=k uE -—E.
k, v

Where, the biomass concentration is noted with-(
[9/l]. The substrate concentration is noted wigh[g/l]
and &) denotes the substrate concentration in the feed -
[9/l]. With (V(t)) is noted the volume at momet} { [I],
Vmax denotes the bioreactor volume arkg (s the sub-
strate feed rate (control input) -fh The specific growth
rate is noted withz and i, denotes the maximum specif-
ic growth rate - [H]. The constanKs is the saturation
constant - [g/l] and, k are yield coefficients - [g/g]. The
system operation conditions were fixed by the feilg
set of valuesu,=0.59 [h], K=0.045 [g/l], =3, =100
[0/, k=2 [-], Vma=1.5 [] [9, 11]. With(E) is noted the
ethanol concentration.

Let Z be the set of alternativeZ%{specific growth
ratesz}=[0, 0.6]) andP be a convex subset of discrete
probability distributions oveE. The expert “preference”
relation overP is expressed througlt) and this is also
true for those oveZ (ZOP). As mentioned above the
utility function is defined with precision up to fafe
transformation (interval scale). A decision suppsys-
tem for subjective utility evaluations is built anded.
The results are shown on Figs. 2 and 3. The ufilibe-
tion is approximated by a polynomial:

Wm=iwﬂ (6)

We denote withU(z) the DM expert function used in
the control design. The polynomial representatien p
mits exact analytical determination of the dervatof
the utility function and determination of the op&im
technological parameters, optimal specific growler
(optimal set point) (Fig. 3) [8, 9]. The utility evaluated
with 64 learning points. This number of questionor a
primary orientation

The seesaw line in Fig. 4 is pattern recognitior\ pf
andB,.

This seesaw line recognizes correctly more then 97%
of the expert answers. The polynomial approximatibn
the DM utility functionU() is the smooth line in Fig. 5
(the mathematical expectation). The utility funaotits
determined with precision up to affine transformati
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QUESTION 117

with probability 90625

with probability 09576

Left Alternative ‘

’ Equivalent :

Conection

Right Alternative ‘

Continue

‘ Exit ‘

Fig. 2. Decision support system.
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Fig. 3. Utility function evaluation.
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The DM’s utility recognizes correctly more then 81%
of the expert answers (learning points and DM’s an-

swers). The maximum of the utility function detenes
the “best”, the optimal set point of the fed-batthtiva-
tion process after the technologist [8].

4. CONTROL DESIGN AND STABILIZATION OF
A COMPLEX CULTIVATION PROCESS

We preserve the notatidyy(.) for the DM utility used
in the control design. The control design is basedhe
solution of the next optimal control problem:

Max(U()) for minimal time,where the variablg is
the specific growth rate 410, tia)- Here Uf) is an
aggregation objective function (the utility funatjoand
D is the control inpufthe dilution rate D0, Dpay ):

maXU (u))! H O [01“ max]- tQ [OyTint]| DO [O: D max],

X =X - DX,

S=—kuX +(So-S)D, 0

1= m(i, H).-

(Ks+9S)

The differential equation in (7) describes conti-
nuous fermentation proces¥he Monod-Wang model
permits exact linearization to Brunovsky normainfiofl,
3,9, and 12]. The optimal solution is determingthuhe
use of the Brunovsky normal form of model (7):

Y2:Y3 (8)
Y;=W.

In the formula abovey denotes the control input of
the Brunovsky model (8). The vector (YY,, Y3) is the
new state vector [9, 11]:

Y=,
Y2:L5(u1-kuf),
Y, =ul (-3 +2k2La3)+n(pm(KSuju2) —u) (- k).
X
U S-S
U, [=®(X,S,u) = S ©)
Us U

The derivative of the function sYdetermines the in-
terconnection betweeW andD. The control design is a
design based on the Brunovsky normal form and egpli
tion of the Pontrjagin’s maximum principle step &tgp
for sufficiently small time periods T [4, 7, 9, ardd].
The interval T could be the step of discretizatadrthe
differential equation solver. The optimal contrali has
the analytical form:
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6 — —
Domzsig{[w _g}T_t{amgm _1}]%

i=l

where (10)

sigrt)=1r>Qsigr)=Qr<Q

The sum is the derivative of the utility functidhis
clear that the optimal “time-minimization” contrig de-
termined from the sign of the utility derivativehd& con-
trol input is D=Dy,ox or D=0. The solution is in fact a
“time-minimizatiofi control (if the time period {f; is
sufficiently small). The control brings the systback to
the set point for minimal time in any case of sfieci
growth rate deviations [9 and 11].

The control lawof the fed-batch proce$ss the same
form becauseé(t) is replaced withF(t)/V(t) in Monod-
Wang model (5). Thus, the feeding rakgt) takes
F(t)=Fnax Or F(t)=0, depending orD(t) which takes
D=D,a 0r D=0.

We conclude that the control law (10) brings the-sy
tem to the set point (optimal growth rate) with @inie
minimization” control, starting from any deviatiawf the
specific growth rat€Fig. 6).

Thus, we design the next control law:

Time interval — [0, ty]: the control is a“time-

minimizatiod control - formula (10), where

u(t)=(Xsg¢), €0, X359 is determined by thenaxU (L))

ande is a sufficiently small value. The inpDtis re-

placed withF=F ., whenD=D,;

e« Time interval — f{;, t)]: the control law isF=0
(u(t)=(Xsoe), p(t)=x3z0 and d/dt(u(tz))=0 (to be
avoided the over-regulation shown on Fig. 6);

« After the moment, the control is again the control
(10) with F=yF 5, WhenD=D,, (chattering control
with 1 = y > 0). The choice of depends on the step
of the equation solver and on bioreactor charagteri
tics and is not a part of the optimization (in timsges-
tigationy = 0.123);

The deviations of the fed-batch process with this-c

trol law are shown on Figs. 6 and 7.

MODEL (3)
CHATERING CONTROL
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PTIMAL CONTROL ; ; ; In this formulakg is a constant. The 5th equation de-
0.45- f - - -1--= —?— e scribes the production of ethandt)( The equivalent
0.4l/-\ _ 1 Second Order Sliding Mode Control | model of the continuous Monod-Wang-Yerusalimsky
model has the form [11]:
w 0.35/ - - ----
'<T< 0.3HfF =~ e Ao g NN .
@ ' —
] T ] Y=Y,
B 02f - ! B Y,=Y.,
@ | | | | (12)
© 0.15 e e i R e ol SRR .
Equwa}lent Sllgmg M(?de Coqtrol Y,.=W,
0.1
v,=vy, e KD
Y. (1-kY,)

The control input of i8V. The state vector has the fol-
lowing explicit form:

Y.=u,
Y, =us(u, - kuf )
Y, =u2 (U= 3KkU; + 2K ) + m(u, — ku? ) x (13)

X (4 Uoke ~uy)
(Ks+U;) (ke + Uy(S0-11))
Y,=u,.

Growth Rate

The last equation in formula (12) could be trans-
formed to the following form:

0 01 02 03

T|M0|é4[h] 05 06 07 08 Y.4:Y4Y2 (kz_le) :Y4Y'1 (kz_le) ,
Yi1-kY) Yi1-kY)

Fig. 8. Optimal growth rate profile.

After the stabilization in the “best” growth rategp- ‘ W(L=kY)
tion the system can be maintained around the optima
parameters with a sliding mode control (Fig. 7) 19, Consecutively the variablé, depends only orY;.
and 15]. The solution of this equation is the following:

The most difficult part of this investigation istde
mination of approximations of momentand moment, Y, = |<4Y'1<2|1—kY]j =k kR, (15)
[9 and 11]. This solution is shown on Fig. 8. Thetea-

mination oft; needs resolution of a transcendent equa-
tion. We propose an approximation of momentThis This solution shows that model (12) is dynamically
approximation is determined by the moment when theequivalent to the Brunovsky normal form describgd b
vector state of the system across a manifold, agypee ~ formula (8)[11]:
tion of the exact solution [9 and 11]. This approation
could be iteratively repeated until the systemidtéhe {(lzyz‘
nominal technological position smoothly (Fig. 8). .

The Monod-Wang kinetic model is a partial case of a Y,=Y,

(16)
more complex Monod-Wang-Yerusalimsky kinetic one:

Y,=W.

X =uX _F X,

\ The Monod-Wang-Yerusalimsky kinetic model has
o _oF the same Brunovsky normal form as this of Monod-
S=-kux +(So S)V’ Wang kinetic model. That is why we could apply the
. S ke (11) same mathematical technique. The control solutdhé
U= m(,umm X — 1), same, the optimal profile is the same and the obfaw

(Ks+9) (ke+ X) is the same, but with a small difference. The axipna-
V=F tion of moment, needs a more complex solution.

' The Monod-Wang-Yrusalimsky kinetic model could

|'5 =k, uE _5 E. be applied in the functional states with distinetiwccur-

rence of an acetate inhibition effect.
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5. CONCLUSIONS (3]

In the paper a mathematical utility evaluation jgroc
dure for elimination of the uncertainty in the dgon-
maker’s preferences is proposed. The approach fgermi
iterative and precise evaluation of the “best” #ipec
growth rate of the fed-batch process and iteratougrol
design in agreement with the DM’s preferences as-ma [6]
imum of this utility function.

An example of complex control design based on them
evaluated DM'’s utility function is demonstrated sbn
dering anEscherichia colifed-batch cultivation process. [g]
Considering theEscherichia colifed-batch process the
mathematical descriptions for the different funatib
states is based on Monod and Yerusalimsky kinetid-m
els. That is why Monod -Wang and Monod-Wang-
Yrusalimsky kinetic models could describe completel
this fed-batch cultivation by a sequence of sudeess
utilization of these models. The parameters ofrtloglels
will change in the different functional sates. TMenod-
Wang-Yrusalimsky kinetic model could be appliedhea
functional states with occurrence of an acetatéitibn
effect.

The stochastic utility evaluation approach anddae
signed decision support system could be used imépt
zation procedures and control design of complex
processes and for description of the complex system
“technologist- dynamic model”.
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