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Abstract: This paper presents an analysis of the collision avoidance of the cooperative robots using the 
programming through imitation. Each physical robot acts fully independently, communicating with cor-
responding virtual prototype and imitating her behavior. Each physical robot reproduces the motion of 
her virtual prototype. The estimation of the collision-free actions of the virtual cooperative robots and the 
transfer of the virtual joint trajectories to the physical robots who imitate there virtual prototypes, are the 
original ideas. We tested the present strategy on several simulation scenarios, involving two virtual ro-
bots and estimating collision-free actions, during of the cooperative tasks. 
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1.  INTRODUCTION 1 
 

Important advancements were produced in the last 
years in fields of intelligent robots. From this point of 
view, promising applications were developed in robot-
robot cooperation. 

Cooperative robots are permanently in danger to be in 
collision. Therefore installations with cooperative robots 
in real world, require collision avoidance methods, which 
take into account the mutual constraints of the robots. 

A key requirement for cooperative efficient operation 
is good coordination and reciprocal collision avoidance. 

The contact of the robot with an obstacle must be de-
tected and it will cause the robot to stop quickly and 
thereafter back off to reduce forces between the robot 
and environment. The problem of the contact with obsta-
cle imposes the null velocity in the moment of the impact 
and to obtain the zero-velocity points on the pathway. 
The collision detection simply determines if two geomet-
ric objects are intersecting or not. The intersecting of two 
objects is possible in the virtual world, where the virtual 
objects can be intersected and there no exist the risk to be 
destroyed. 

Using this strategy one detects collisions in all direc-
tions, protecting not only the physical end-effectors but 
also the work pieces and the physical robot itself. 

The ability of predicting of the behavior of coopera-
tive robots is important in design; the designers want to 
know whether the robot will be able to perform a typical 
task in a given time frame into a space with constraints.  

The control engineer cannot risk a valuable piece of 
equipment by exposing it to untested control strategies. 
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Therefore, a facile strategy for contact detection and col-
lision avoidance, capable of predicting the behavior of a 
robotic manipulators, becomes imperative. 

When the robots need to interact with their surround-
ing, it is important that the computer can simulate the 
interactions of the cooperative participants, with the pas-
sive or active changing environment in the graphics field, 
using virtual prototyping. 

In this paper, we propose a fast method that simulta-
neously determines actions for two virtual robots that 
each must cooperate with other.  

The actions for the cooperative tasks are computed 
for each virtual robot and are transferred, with a central 
coordination to corresponding physical robot which must 
imitate her virtual homonym. Thus, we will prove that 
our method guarantees the collision-free motion for each 
of the cooperative robots. 

In this paper we develop a formally analyze of a new 
collision avoidance strategy for a group of two coopera-
tive robots. We assume that our strategy is able to deduce 
the exact shape, position and velocity of the virtual ob-
stacles and of the virtual robots, in the virtual environ-
ment. We transfer the behavior of the virtual cooperative 
robots, in the real world, to the physical cooperative ro-
bots. 

This paper is focused on the collision avoidance 
through transfer the motion mapping from virtual space, 
in 3-D dimensional real space. 

 
2.  OVERVIEW OF IMITATION 
 

Imitation is an important learning mechanism in 
many intelligent systems including robots. It is easy to 
recuperate kinematic information from virtual robot mo-
tion, using for example motion capture. Imitating the 
motion with stable robot dynamics is a challenging re-
search problem [7]. 
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Fig, 1. A framework for robot learning by imitation. a − Virtual cooperative robots; b − Real cooperative robots. 
 

In this paper, we propose a control framework for 
physical cooperative robots that uses capture data from 
their virtual prototypes and imitate them to track the mo-
tion in the real space avoiding the collision. 

We focus on tracking joint angle trajectories, alt-
hough some cooperative tasks may require tracking other 
quantities such as end-effectors trajectories which will be 
addressed in future work. 

We present a model for which robust controller can 
be easily designed. A typical example is a linear quadrat-
ic regulator (LQR) [4], which we will use for our exam-
ples.  

The tracking controller tries to make the joints follow 
the reference trajectory specified by the motion capture 
data from the virtual robots. 

Joint trajectory tracking is enabled by commanding 
desired joint accelerations based on joint angle and ve-
locity errors as well as supply forward joint accelera-
tions. The tracking controller then solves an optimization 
problem with a quadratic cost function including errors 
from desired inputs and joint accelerations [1]. 

We will demonstrate the tracking ability of the pro-
posed controller with dynamics simulation that takes into 
account joint velocity and torque limits. We apply the 
controller to tracking motion capture clips of two coop-
erative robots who accomplish a collaborative task. The 
resulting robot motion clearly preserves the original be-
havior of each virtual robot.  

In addition, the controller does not require intensive 
pre-processing of motion capture data, which makes it 
potentially applicable to real time applications. 

In this paper, we propose an approach to achieving 
pathway acquisition in robots programming, using imita-
tion strategy.  

The framework for our method is shown in Fig. 1. 

First, a motion capture system transforms Cartesian 
position of virtual robot structure to virtual joint angles 
based on kinematic model. Then, the joint angles are 
converted in binary words and transferred to real robot 
joint controllers via intelligent interface. After this we 
employ the control loops structure to establish relation-
ships between the virtual and real robot control systems.  

We employed dimensionality reduction to represent 
posture information in a virtual low-dimensional space 
[3].  

Optimization of the real robots behavior is performed 
in the low dimensional virtual space using the virtual 
robots.  

In particular, for reciprocal correspondence, sensory 
feedback data are recorded from the real robot during 
motion [2]. A causal relationship between actions in the 
low dimensional virtual space and the expected sensory 
feedback is learned. This learned sensory motor mapping 
allows virtual motion dynamics to be optimized.  

As well an inverse mapping from the real joint space, 
back to the original virtual joint space is then used to 
generate optimized motion. We present results demon-
strating that the proposed approach allows a real robot to 
learn move based exclusively on virtual robot motion 
capture without the need for a detailed physical model of 
the robot. 
 
3.  MOTION CAPTURE AND KINEMATIC 

MAPPING 
 

A. Motion Capture Data Processing 
We transfer via intelligent interface the joint angle 

data from a motion capture system to a kinematic model 
for an anthropomorphic robot. To generate the desired 
motion sequence for the real robot, we capture the mo-
tions from a virtual robot model and map these to the 
joint settings of the physical robot. 

Initially, a set of virtual postures is created to the vir-
tual robot and the pictures’ positions are recorded for 
each posture, during motion. These recorded pictures’ 
positions provide a set of Cartesian points in the 3D cap-
ture volume for each posture.  

To obtain the final robot posture, the virtual pictures’ 
positions are assigned as positional constraints on the 
physical robot. To derive the joint angles one use stand-
ard inverse kinematics (IK) routines. 
The IK routine then directly generates the desired joint 
angles on the robot for each posture.      

We assume to use the virtual robot prototypes and the 
motion capture systems to obtain the reference motion 
data, which typically consist of a set of trajectories in the 
Cartesian space. 

The data is obtained using a motion capture channel 
taking into account the joint motion range. Due to the 
joint limits and the difference between the kinematics of 
the virtual robot and real robot, the joint angle data are 
pre-processed.  
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Fig. 2. Overview of the controllers. 

 
In our pre-processing, we assume that both virtual 

and physical robots are on the scene at the same time and 
estimate the correct arms position and orientation. 

We then compute the inverse kinematics for new pos-
ture to obtain the cleaned joint angles and retain the dif-
ference from original joint angles.  

At each frame during control, we add the difference 
to the original data to obtain the cleaned reference joint 
angles. This correction is extremely simple and our con-
troller does not require supplementary cleanup. 
 

B, Controller 
Figure 2 shows the overview of the controller. The 

two main components are an equilibrium controller and a 
tracking controller. The equilibrium controller is respon-
sible for keeping the whole physical structure in equilib-
rium, usually using a controller designed for a simplified 
dynamics model, such as Linear Quadratic Regulator 
(LQR). The output of the equilibrium controller is the 
desired input to the track controller. 

The tracking controller is responsible for making eve-
ry joint track the desired trajectory. It solves an optimiza-
tion problem that respects both joint tracking and desired 
inputs to the simplified model and obtains the joint tor-
ques to be commanded to the real robot. 
 
4.  CONTROLLER COMPOSITION 
 

A. Notations and Basic Equations. We denote the 
number of actuated joints of the robot by Nj. The total 
degrees of freedom (DOF) of the robot are then Nj in-
cluding the DOF of type translation and rotation of the 
virtual joints. The robot configuration is uniquely defined 
by the generalized coordinate q. We also denote the gen-
eralized force by τJ. 

We suppose that virtual robots usually move with 
some of their links in contact with the virtual environ-
ment. More of that, one can intersect their virtual struc-
ture without risk to be destroyed.  

Let Nc denote the number of links in contact with the 
environment. We represent the linear and angular veloci-
ties of the i-th contact link by a 6-dimensional vector 

ciXɺ . The relationship between the generalized velocity 

qɺ and ciXɺ  is written as: 

 qJX cici ɺɺ =   (1) 

where Jci is the Jacobian matrix of the i-th contact link’s 
position and orientation with respect to the generalized 
coordinates. Differentiating Eq. (1), we obtain the rela-
tionship of the accelerations: 
 

 qJqJX cicici ɺɺɺɺɺɺ +=  (2) 
 

We define the compound contact Jacobian matrix Jc 
by: 
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Because the source joint is not actuated, we can only 

control the joint torque vector τJ. In addition, each of the 
Nc links in contact with the environment receives contact 
force fci and moment around the link local frame nci (i = 
1, 2, …, Nc). We also define the compound contact 
force/moment vector by: 
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The equation of motion of the robot is written as 

 

 c
T
cJ

T fJτNcqM +=+ɺɺ   (5) 
 
where M is the joint-space inertia matrix and C is the 
sum of Coriolis, centrifugal and gravity forces. Matrix N 
is used to map the joint torques into the generalized forc-
es and has the form: 
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where 0* and 1* are zero and identity matrices of the 
sizes indicated by their subscripts respectively. 

Figure 3 shows the structure of the equilibrium con-
troller. The equilibrium controller consists of two main 
components: a regulator to compute the input to the sim-
plified model to keep it in equilibrium, and an observer 
to estimate the current state of the virtual robot prototype 
based on measurements.  

We can use any simplified model as long as it repre-
sents the dynamics of the virtual robot and an equilibri-
um controller can be designed. A typical example is a 
linear system, for which a regulator can be easily de-
signed by optimal control. 
 

Details. Let us assume that the simplified model is 
linear and represented by the following state-space dif-
ferential equation: 

 
 

 uBAxx +=ɺ ,  (7) 

 

 
 xCy = ,  (8) 
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Fig. 3. Overview of the equilibrium controller. 
 
 
where x is the state vector, u is the input, and y is the 
output of the simplified model. Also assume that we have 
designed a state feedback controller for equilibrium: 
 

 )( xxKu ref −=   (9) 
 
where K is a constant gain matrix and xref is a reference 
state, typically computed from the reference motion. 

The observer compares the estimated and actual out-
puts to update the state estimatex̂  as: 
 

 )ˆ(ˆˆ yyFBuxAx −++=ɺ   (10) 
 

where F is the observer gain and xCy ˆˆ =  is the estimated 

output. Because we do not have access to real state, we 
replace the state x with its estimate x̂  in Eq. (9): 

 
 )ˆ( xxKu ref −=   (11) 

 
Using Eqs. (7), (8), (10) and (11), we obtain the fol-

lowing system of the estimated state and new input:  
 

 TTT
refb yxu )(= ; 

 

 bbb uBxAx += ˆˆɺ ,  (12) 

where: 
 FCBKAAb −−= , 

 FBBb −= . 
 

Equation (12) describes how to estimate the current 
state of the simplified model based on a reference state 
and measured output.  

The estimated state and input to the simplified model 
computed by Eq. (11) will be used as the input to the 
tracking controller. 

The system of tracking controller for each joint con-
sists of two local controllers and a joint torque optimiza-
tion. 
 

B. Local Controllers. The local controllers compute 
the desired accelerations of joint and contact links based 

on the reference and current position and velocity as well 
as the reference accelerations [5]. 

In the joint controller, the desired acceleration q̂ɺɺ  is 

computed as follows at each joint: 
 

 )()(ˆ qqkqqkqq refprefdref −+−+= ɺɺɺɺ
ɺɺ   (13) 

 
where q is the current joint position, qref is the reference 
joint position in the captured data, and kp and kd are con-
stant position and velocity gains that may be different for 
each joint. 

We assume that the position and orientation of the 
virtual joints is available by computing the kinematics. 
We can therefore compute the desired linear and angular 
accelerations of the virtual joints, and combine them with 
all desired joint accelerations to form the desired acceler-

ation vectorq̂ɺɺ .  

Control law (13) is the same as the one used in re-
solved acceleration control except that the virtual joint is 
not actuated and the desired acceleration may be altered 
by the optimization part described later. 
 

C. Optimizer. The task of the optimizer is to com-
pute the control inputs based on the information obtained 

so farq̂ɺɺ , cX̂ɺɺ and the desired input to the simplified model 

obtained by the equilibrium controller. In most cases, 
however, these conditions conflict with each other. We 
therefore perform an optimization to compute a set of 
joint torques that respects all of these quantities. 

The unknowns of the optimization are the joint torques 
τJ and contact forces fc.  

The cost function to be minimized is: 
 
 fcq ZZZZZ +++= τ  (14) 

 
and each of the five terms will be described in detail in 
the following paragraphs. 

The term Zs addresses the error from the desired input 
to the simplified model. We consider a mapping from the 
simplified model the torque of a representative joint.  

The term Zq denotes the error from the desired joint 
accelerations, i.e., 
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The term Zc denotes the error from the desired contact 

link accelerations, i.e., 
 

 )ˆ()ˆ(
2

1
ccc

T
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The term Zτ is written as: 

 

 )ˆ()ˆ(
2

1
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T
JJ ττWττZ −−= ττ , (17) 

 
where Jτ̂  is a reference joint torque, which is typically set 

to a zero vector and hence Zτ acts as a damping term for 
the joint torque. 
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The term Zf has a similar role for the contact force, 
i.e., 
 

 )ˆ()ˆ(
2

1
ccf

T
ccf ffWffZ −−= , (18) 

 
where cf̂  is a reference contact force, which is also typi-

cally set to the zero vector. 
Using Eqs. (2) and (5), the cost function can be con-

verted to the following quadratic form: 
 

 cbyAyyZ TT ++=
2

1
, (19) 

 
where TT

c
T
J fy )(τ=  is the unknown vector. 

The optimization problem has an analytical solution: 
 

 bAy 1−−= . (20) 

 
D. Considering Contact Force and Hardware Lim-

its. We have so far assumed that any contact force is 
available. Real hardware has limitations in joint angles, 
velocities and torques. We could add inequality con-
straints to enforce these constraints, but solving the opti-
mization problem would take significantly longer than 
simply using Eq. (20). 

We deal with these limitations by adjusting the pa-
rameters in the optimization instead of adding con-
straints, hence without changing the solution (20). The 
drawback is that the limitations are not always met, but 
the expectation is that the balance controller can com-
pensate for the difference between approximate and exact 
solutions. 

For the contact force limitations, we set larger values 
for elements of Wf corresponding to the frictions and 
moments. 

To address the joint torque limit, we utilize the refer-
ence joint torque used in Eq. (17). If any of the joint tor-
ques exceeds its limit at a sampling time, we set the cor-
responding reference torque to the limit in the next sam-
pling time and increase the influence. We can therefore 
expect that the excess torque would be relatively small 
and thus having little effect even if the torque is saturated 
by the limit. 
 
5.  SIMULATION FRAMEWORK 
 

The basic essence of our framework is to describe 
each rigid object in the planning scene as a dynamical 
system, which is characterized by its state variables (i.e. 
position, orientation, linear and angular velocity).  

In this framework, a robot arm can be a collection of 
rigid bodies, subject to the influence of various forces in 
the workspace, and restricted by various motion con-
straints. 

This transforms a motion planning problem into a 
problem of defining suitable constraints, and then simu-
lating the rigid body dynamics of the scene with each 
constraint acting as a virtual force on the objects such as 
the collision will be avoided.  

This current method only deals with static data sets. 
Even, if this is not an issue for off-line computations, it 
prevents many uses in real-world applications since very 
small time steps are required to ensure stability. For real-
world applications various ways to overcome this prob-
lem have been used [6].  

We used a dynamics simulator called Robot Imitating 
Platform (RIP) with rigid-body contact model, developed 
at University of Brasov [8], who’s precision has been 
demonstrated in some simulation settings for cooperative 
work using Virtual Reality. 

The RIP is an architecture that provides libraries and 
tools to help software developers in programming. RIP is 
focused on 3D simulation of the dynamics systems and 
on a control and planning interface that provides primi-
tives for motion planning by imitation.  

Also is a object-oriented infrastructure for the inte-
gration of controllers, as well as the integration of plan-
ners with controllers to achieve feedback based planning, 
In particular, RIP is used to provide concrete implemen-
tations of motion planners. The proposed infrastructure, 
however, allows the definition of more complex prob-
lems such as planning among moving obstacles. The 
joint kinematics and inertial parameters are derived from 
the CAD model.  

We used experimentally-verified joint motion range 
and joint torque limit information as well as the design 
specification for the joint velocity limit.  

The joint motion range constraint is enforced during 
the inverse kinematics computation, but we did not con-
sider the joint motion range in simulation assuming that 
the joints track the reference trajectory well enough. If a 
joint velocity comes close to the limit, we add a strong 
damping torque to reduce the speed.  

If the optimized joint torque exceeds the limit, it is 
reset to the maximum value before the simulator com-
putes the joint acceleration 

The second contribution of this work involves the de-
velopment of a platform for composing and evaluating 
controllers and motion planners.  

This platform, called RIP utilizes a framework which 
allows both high level and low level controllers to be 
composed in a way that provides complex interactions 
between many robots. 
 
6.  CONCLUSIONS 
 

Collision detection strategy is based on identifying 
the zero-velocity impact points between virtual objects in 
the moment of the impact. The null velocity in the mo-
ment of the impact requires a highly accurate model of 
robot dynamics and the environment in order to achieve 
the collision avoidance.  

So, the problem of the contact detection is better ana-
lyzed on the virtual prototypes in the virtual environment 
where one may predict there behavior. The problem of 
the contact detection in the virtual environment on the 
virtual robots is important for the reason that this built-in 
function is proven superior to other collision detection 
devices. 

The contact of two objects is possible in the virtual 
world, where the virtual objects can be intersected and 
there no exist the risk to be destroyed. 
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Learning approach such as learning by imitation is 
more flexible and can adapt to environmental change. 
This method is typically directly applicable to coopera-
tive robots due the possibility to transfer the virtual joint 
trajectories from virtual space to the real space of the 
physical robots. 

Programming real robots, especially to perform the 
behavior of the virtual robots is accomplished by imita-
tion using virtual robots motion data capture.  

The real (physical) robot will imitate her virtual pro-
totype; it has no supplementary devices for collision 
avoidance, and gives it higher reliability and more cost 
efficiency. Also, since there is no device attached to the 
real robot tool, one not extends the tool offset distance, 
which allows bigger maximum tool weight and better 
reorientation performance. 
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