

Proceedings in Manufacturing Systems, Volume 8, Issue 2, 2013

ISSN 2067-9238

AN ANALYSIS OF THE ROBOT COLLISION AVOIDANCE USING THE
PROGRAMMING THROUGH IMITATION

Aurel FRATU1,*, Michel DAMBRINE2, 3

1) Prof., PhD, Dept. of Automatics, Electronics and Computers, „Transilvania” University of Braşov, Brasov, Romania

2) Prof., PhD, Univ Lille Nord de France, F-59000 Lille, France,
3) UVHC, LAMIH, F-59313 Valenciennes, France

Abstract: This paper presents an analysis of the collision avoidance of the cooperative robots using the
programming through imitation. Each physical robot acts fully independently, communicating with cor-
responding virtual prototype and imitating her behavior. Each physical robot reproduces the motion of
her virtual prototype. The estimation of the collision-free actions of the virtual cooperative robots and the
transfer of the virtual joint trajectories to the physical robots who imitate there virtual prototypes, are the
original ideas. We tested the present strategy on several simulation scenarios, involving two virtual ro-
bots and estimating collision-free actions, during of the cooperative tasks.

Key words: virtual robots, cooperative robots, collision avoidance, motion imitation.

1. INTRODUCTION 1

Important advancements were produced in the last
years in fields of intelligent robots. From this point of
view, promising applications were developed in robot-
robot cooperation.

Cooperative robots are permanently in danger to be in
collision. Therefore installations with cooperative robots
in real world, require collision avoidance methods, which
take into account the mutual constraints of the robots.

A key requirement for cooperative efficient operation
is good coordination and reciprocal collision avoidance.

The contact of the robot with an obstacle must be de-
tected and it will cause the robot to stop quickly and
thereafter back off to reduce forces between the robot
and environment. The problem of the contact with obsta-
cle imposes the null velocity in the moment of the impact
and to obtain the zero-velocity points on the pathway.
The collision detection simply determines if two geomet-
ric objects are intersecting or not. The intersecting of two
objects is possible in the virtual world, where the virtual
objects can be intersected and there no exist the risk to be
destroyed.

Using this strategy one detects collisions in all direc-
tions, protecting not only the physical end-effectors but
also the work pieces and the physical robot itself.

The ability of predicting of the behavior of coopera-
tive robots is important in design; the designers want to
know whether the robot will be able to perform a typical
task in a given time frame into a space with constraints.

The control engineer cannot risk a valuable piece of
equipment by exposing it to untested control strategies.

* Corresponding author: Str. Mihai Viteazu nr. 5, Corp V, et III
Cod. 500174, Jud. Braşov, Romania
Tel.: +40 268 418 836
E-mail addresses: fratu@unitbv.ro (A. Fratu),
michel.dambrine@univ-valenciennes.fr (M. Dambrine)

Therefore, a facile strategy for contact detection and col-
lision avoidance, capable of predicting the behavior of a
robotic manipulators, becomes imperative.

When the robots need to interact with their surround-
ing, it is important that the computer can simulate the
interactions of the cooperative participants, with the pas-
sive or active changing environment in the graphics field,
using virtual prototyping.

In this paper, we propose a fast method that simulta-
neously determines actions for two virtual robots that
each must cooperate with other.

The actions for the cooperative tasks are computed
for each virtual robot and are transferred, with a central
coordination to corresponding physical robot which must
imitate her virtual homonym. Thus, we will prove that
our method guarantees the collision-free motion for each
of the cooperative robots.

In this paper we develop a formally analyze of a new
collision avoidance strategy for a group of two coopera-
tive robots. We assume that our strategy is able to deduce
the exact shape, position and velocity of the virtual ob-
stacles and of the virtual robots, in the virtual environ-
ment. We transfer the behavior of the virtual cooperative
robots, in the real world, to the physical cooperative ro-
bots.

This paper is focused on the collision avoidance
through transfer the motion mapping from virtual space,
in 3-D dimensional real space.

2. OVERVIEW OF IMITATION

Imitation is an important learning mechanism in
many intelligent systems including robots. It is easy to
recuperate kinematic information from virtual robot mo-
tion, using for example motion capture. Imitating the
motion with stable robot dynamics is a challenging re-
search problem [7].

112 A. Fratu and M. Dambrine / Proceedings in Manufacturing Systems, Vol. 8, Iss. 2, 2013 / 111−116

a b

Fig, 1. A framework for robot learning by imitation. a − Virtual cooperative robots; b − Real cooperative robots.

In this paper, we propose a control framework for
physical cooperative robots that uses capture data from
their virtual prototypes and imitate them to track the mo-
tion in the real space avoiding the collision.

We focus on tracking joint angle trajectories, alt-
hough some cooperative tasks may require tracking other
quantities such as end-effectors trajectories which will be
addressed in future work.

We present a model for which robust controller can
be easily designed. A typical example is a linear quadrat-
ic regulator (LQR) [4], which we will use for our exam-
ples.

The tracking controller tries to make the joints follow
the reference trajectory specified by the motion capture
data from the virtual robots.

Joint trajectory tracking is enabled by commanding
desired joint accelerations based on joint angle and ve-
locity errors as well as supply forward joint accelera-
tions. The tracking controller then solves an optimization
problem with a quadratic cost function including errors
from desired inputs and joint accelerations [1].

We will demonstrate the tracking ability of the pro-
posed controller with dynamics simulation that takes into
account joint velocity and torque limits. We apply the
controller to tracking motion capture clips of two coop-
erative robots who accomplish a collaborative task. The
resulting robot motion clearly preserves the original be-
havior of each virtual robot.

In addition, the controller does not require intensive
pre-processing of motion capture data, which makes it
potentially applicable to real time applications.

In this paper, we propose an approach to achieving
pathway acquisition in robots programming, using imita-
tion strategy.

The framework for our method is shown in Fig. 1.

First, a motion capture system transforms Cartesian
position of virtual robot structure to virtual joint angles
based on kinematic model. Then, the joint angles are
converted in binary words and transferred to real robot
joint controllers via intelligent interface. After this we
employ the control loops structure to establish relation-
ships between the virtual and real robot control systems.

We employed dimensionality reduction to represent
posture information in a virtual low-dimensional space
[3].

Optimization of the real robots behavior is performed
in the low dimensional virtual space using the virtual
robots.

In particular, for reciprocal correspondence, sensory
feedback data are recorded from the real robot during
motion [2]. A causal relationship between actions in the
low dimensional virtual space and the expected sensory
feedback is learned. This learned sensory motor mapping
allows virtual motion dynamics to be optimized.

As well an inverse mapping from the real joint space,
back to the original virtual joint space is then used to
generate optimized motion. We present results demon-
strating that the proposed approach allows a real robot to
learn move based exclusively on virtual robot motion
capture without the need for a detailed physical model of
the robot.

3. MOTION CAPTURE AND KINEMATIC

MAPPING

A. Motion Capture Data Processing
We transfer via intelligent interface the joint angle

data from a motion capture system to a kinematic model
for an anthropomorphic robot. To generate the desired
motion sequence for the real robot, we capture the mo-
tions from a virtual robot model and map these to the
joint settings of the physical robot.

Initially, a set of virtual postures is created to the vir-
tual robot and the pictures’ positions are recorded for
each posture, during motion. These recorded pictures’
positions provide a set of Cartesian points in the 3D cap-
ture volume for each posture.

To obtain the final robot posture, the virtual pictures’
positions are assigned as positional constraints on the
physical robot. To derive the joint angles one use stand-
ard inverse kinematics (IK) routines.
The IK routine then directly generates the desired joint
angles on the robot for each posture.

We assume to use the virtual robot prototypes and the
motion capture systems to obtain the reference motion
data, which typically consist of a set of trajectories in the
Cartesian space.

The data is obtained using a motion capture channel
taking into account the joint motion range. Due to the
joint limits and the difference between the kinematics of
the virtual robot and real robot, the joint angle data are
pre-processed.

 A. Fratu and M. Dambrine / Proceedings in Manufacturing Systems, Vol. 8, Iss. 2, 2013 / 111−116 113

Fig. 2. Overview of the controllers.

In our pre-processing, we assume that both virtual

and physical robots are on the scene at the same time and
estimate the correct arms position and orientation.

We then compute the inverse kinematics for new pos-
ture to obtain the cleaned joint angles and retain the dif-
ference from original joint angles.

At each frame during control, we add the difference
to the original data to obtain the cleaned reference joint
angles. This correction is extremely simple and our con-
troller does not require supplementary cleanup.

B, Controller
Figure 2 shows the overview of the controller. The

two main components are an equilibrium controller and a
tracking controller. The equilibrium controller is respon-
sible for keeping the whole physical structure in equilib-
rium, usually using a controller designed for a simplified
dynamics model, such as Linear Quadratic Regulator
(LQR). The output of the equilibrium controller is the
desired input to the track controller.

The tracking controller is responsible for making eve-
ry joint track the desired trajectory. It solves an optimiza-
tion problem that respects both joint tracking and desired
inputs to the simplified model and obtains the joint tor-
ques to be commanded to the real robot.

4. CONTROLLER COMPOSITION

A. Notations and Basic Equations. We denote the
number of actuated joints of the robot by Nj. The total
degrees of freedom (DOF) of the robot are then Nj in-
cluding the DOF of type translation and rotation of the
virtual joints. The robot configuration is uniquely defined
by the generalized coordinate q. We also denote the gen-
eralized force by τJ.

We suppose that virtual robots usually move with
some of their links in contact with the virtual environ-
ment. More of that, one can intersect their virtual struc-
ture without risk to be destroyed.

Let Nc denote the number of links in contact with the
environment. We represent the linear and angular veloci-
ties of the i-th contact link by a 6-dimensional vector

ciXɺ . The relationship between the generalized velocity

qɺ and ciXɺ is written as:

 qJX cici ɺɺ = (1)

where Jci is the Jacobian matrix of the i-th contact link’s
position and orientation with respect to the generalized
coordinates. Differentiating Eq. (1), we obtain the rela-
tionship of the accelerations:

 qJqJX cicici ɺɺɺɺɺɺ += (2)

We define the compound contact Jacobian matrix Jc
by:

=

cNc

c

c

c

c

J

J

J

J

J 3

2

1

 (3)

Because the source joint is not actuated, we can only

control the joint torque vector τJ. In addition, each of the
Nc links in contact with the environment receives contact
force fci and moment around the link local frame nci (i =
1, 2, …, Nc). We also define the compound contact
force/moment vector by:

 T
cNc

T
cNc

T
c

T
cc nfnff ⋅⋅⋅= 11 (4)

The equation of motion of the robot is written as

 c
T
cJ

T fJτNcqM +=+ɺɺ (5)

where M is the joint-space inertia matrix and C is the
sum of Coriolis, centrifugal and gravity forces. Matrix N
is used to map the joint torques into the generalized forc-
es and has the form:

×

×=
j

N
j

N
j

N
N 1

6
0 (6)

where 0* and 1* are zero and identity matrices of the
sizes indicated by their subscripts respectively.

Figure 3 shows the structure of the equilibrium con-
troller. The equilibrium controller consists of two main
components: a regulator to compute the input to the sim-
plified model to keep it in equilibrium, and an observer
to estimate the current state of the virtual robot prototype
based on measurements.

We can use any simplified model as long as it repre-
sents the dynamics of the virtual robot and an equilibri-
um controller can be designed. A typical example is a
linear system, for which a regulator can be easily de-
signed by optimal control.

Details. Let us assume that the simplified model is
linear and represented by the following state-space dif-
ferential equation:

 uBAxx +=ɺ , (7)

 xCy = , (8)

Motion clip on
the monitor

(virtual model)

Equilibrium
controller

Track
controller

Reference
state of the

virtual model

Reference joint
angles from the
virtual model

Desired input

Joint torques Current
joint angles
velocities

Measured output
of the physical

model
Physical robot

motion

114 A. Fratu and M. Dambrine / Proceedings in Manufacturing Systems, Vol. 8, Iss. 2, 2013 / 111−116

.

Fig. 3. Overview of the equilibrium controller.

where x is the state vector, u is the input, and y is the
output of the simplified model. Also assume that we have
designed a state feedback controller for equilibrium:

)(xxKu ref −= (9)

where K is a constant gain matrix and xref is a reference
state, typically computed from the reference motion.

The observer compares the estimated and actual out-
puts to update the state estimatex̂ as:

)ˆ(ˆˆ yyFBuxAx −++=ɺ (10)

where F is the observer gain and xCy ˆˆ = is the estimated

output. Because we do not have access to real state, we
replace the state x with its estimate x̂ in Eq. (9):

)ˆ(xxKu ref −= (11)

Using Eqs. (7), (8), (10) and (11), we obtain the fol-

lowing system of the estimated state and new input:

 TTT
refb yxu)(= ;

 bbb uBxAx += ˆˆɺ , (12)

where:
 FCBKAAb −−= ,

 FBBb −= .

Equation (12) describes how to estimate the current
state of the simplified model based on a reference state
and measured output.

The estimated state and input to the simplified model
computed by Eq. (11) will be used as the input to the
tracking controller.

The system of tracking controller for each joint con-
sists of two local controllers and a joint torque optimiza-
tion.

B. Local Controllers. The local controllers compute
the desired accelerations of joint and contact links based

on the reference and current position and velocity as well
as the reference accelerations [5].

In the joint controller, the desired acceleration q̂ɺɺ is

computed as follows at each joint:

)()(ˆ qqkqqkqq refprefdref −+−+= ɺɺɺɺ
ɺɺ (13)

where q is the current joint position, qref is the reference
joint position in the captured data, and kp and kd are con-
stant position and velocity gains that may be different for
each joint.

We assume that the position and orientation of the
virtual joints is available by computing the kinematics.
We can therefore compute the desired linear and angular
accelerations of the virtual joints, and combine them with
all desired joint accelerations to form the desired acceler-

ation vectorq̂ɺɺ .

Control law (13) is the same as the one used in re-
solved acceleration control except that the virtual joint is
not actuated and the desired acceleration may be altered
by the optimization part described later.

C. Optimizer. The task of the optimizer is to com-
pute the control inputs based on the information obtained

so farq̂ɺɺ , cX̂ɺɺ and the desired input to the simplified model

obtained by the equilibrium controller. In most cases,
however, these conditions conflict with each other. We
therefore perform an optimization to compute a set of
joint torques that respects all of these quantities.

The unknowns of the optimization are the joint torques
τJ and contact forces fc.

The cost function to be minimized is:

 fcq ZZZZZ +++= τ (14)

and each of the five terms will be described in detail in
the following paragraphs.

The term Zs addresses the error from the desired input
to the simplified model. We consider a mapping from the
simplified model the torque of a representative joint.

The term Zq denotes the error from the desired joint
accelerations, i.e.,

)ˆ()ˆ(
2

1
qqWqqZ q

T
q ɺɺɺɺɺɺɺɺ −−= (15)

The term Zc denotes the error from the desired contact

link accelerations, i.e.,

)ˆ()ˆ(
2

1
ccc

T
ccc XXWXXZ ɺɺɺɺɺɺɺɺ −−= (6)

The term Zτ is written as:

)ˆ()ˆ(
2

1
JJ

T
JJ ττWττZ −−= ττ , (17)

where Jτ̂ is a reference joint torque, which is typically set

to a zero vector and hence Zτ acts as a damping term for
the joint torque.

Regulator

Simplified
model

Observer

Reference
state

Desired input

Estimated
output

Estimated
state

Measured output

 A. Fratu and M. Dambrine / Proceedings in Manufacturing Systems, Vol. 8, Iss. 2, 2013 / 111−116 115

The term Zf has a similar role for the contact force,
i.e.,

)ˆ()ˆ(
2

1
ccf

T
ccf ffWffZ −−= , (18)

where cf̂ is a reference contact force, which is also typi-

cally set to the zero vector.
Using Eqs. (2) and (5), the cost function can be con-

verted to the following quadratic form:

 cbyAyyZ TT ++=
2

1
, (19)

where TT

c
T
J fy)(τ= is the unknown vector.

The optimization problem has an analytical solution:

 bAy 1−−= . (20)

D. Considering Contact Force and Hardware Lim-

its. We have so far assumed that any contact force is
available. Real hardware has limitations in joint angles,
velocities and torques. We could add inequality con-
straints to enforce these constraints, but solving the opti-
mization problem would take significantly longer than
simply using Eq. (20).

We deal with these limitations by adjusting the pa-
rameters in the optimization instead of adding con-
straints, hence without changing the solution (20). The
drawback is that the limitations are not always met, but
the expectation is that the balance controller can com-
pensate for the difference between approximate and exact
solutions.

For the contact force limitations, we set larger values
for elements of Wf corresponding to the frictions and
moments.

To address the joint torque limit, we utilize the refer-
ence joint torque used in Eq. (17). If any of the joint tor-
ques exceeds its limit at a sampling time, we set the cor-
responding reference torque to the limit in the next sam-
pling time and increase the influence. We can therefore
expect that the excess torque would be relatively small
and thus having little effect even if the torque is saturated
by the limit.

5. SIMULATION FRAMEWORK

The basic essence of our framework is to describe
each rigid object in the planning scene as a dynamical
system, which is characterized by its state variables (i.e.
position, orientation, linear and angular velocity).

In this framework, a robot arm can be a collection of
rigid bodies, subject to the influence of various forces in
the workspace, and restricted by various motion con-
straints.

This transforms a motion planning problem into a
problem of defining suitable constraints, and then simu-
lating the rigid body dynamics of the scene with each
constraint acting as a virtual force on the objects such as
the collision will be avoided.

This current method only deals with static data sets.
Even, if this is not an issue for off-line computations, it
prevents many uses in real-world applications since very
small time steps are required to ensure stability. For real-
world applications various ways to overcome this prob-
lem have been used [6].

We used a dynamics simulator called Robot Imitating
Platform (RIP) with rigid-body contact model, developed
at University of Brasov [8], who’s precision has been
demonstrated in some simulation settings for cooperative
work using Virtual Reality.

The RIP is an architecture that provides libraries and
tools to help software developers in programming. RIP is
focused on 3D simulation of the dynamics systems and
on a control and planning interface that provides primi-
tives for motion planning by imitation.

Also is a object-oriented infrastructure for the inte-
gration of controllers, as well as the integration of plan-
ners with controllers to achieve feedback based planning,
In particular, RIP is used to provide concrete implemen-
tations of motion planners. The proposed infrastructure,
however, allows the definition of more complex prob-
lems such as planning among moving obstacles. The
joint kinematics and inertial parameters are derived from
the CAD model.

We used experimentally-verified joint motion range
and joint torque limit information as well as the design
specification for the joint velocity limit.

The joint motion range constraint is enforced during
the inverse kinematics computation, but we did not con-
sider the joint motion range in simulation assuming that
the joints track the reference trajectory well enough. If a
joint velocity comes close to the limit, we add a strong
damping torque to reduce the speed.

If the optimized joint torque exceeds the limit, it is
reset to the maximum value before the simulator com-
putes the joint acceleration

The second contribution of this work involves the de-
velopment of a platform for composing and evaluating
controllers and motion planners.

This platform, called RIP utilizes a framework which
allows both high level and low level controllers to be
composed in a way that provides complex interactions
between many robots.

6. CONCLUSIONS

Collision detection strategy is based on identifying
the zero-velocity impact points between virtual objects in
the moment of the impact. The null velocity in the mo-
ment of the impact requires a highly accurate model of
robot dynamics and the environment in order to achieve
the collision avoidance.

So, the problem of the contact detection is better ana-
lyzed on the virtual prototypes in the virtual environment
where one may predict there behavior. The problem of
the contact detection in the virtual environment on the
virtual robots is important for the reason that this built-in
function is proven superior to other collision detection
devices.

The contact of two objects is possible in the virtual
world, where the virtual objects can be intersected and
there no exist the risk to be destroyed.

116 A. Fratu and M. Dambrine / Proceedings in Manufacturing Systems, Vol. 8, Iss. 2, 2013 / 111−116

Learning approach such as learning by imitation is
more flexible and can adapt to environmental change.
This method is typically directly applicable to coopera-
tive robots due the possibility to transfer the virtual joint
trajectories from virtual space to the real space of the
physical robots.

Programming real robots, especially to perform the
behavior of the virtual robots is accomplished by imita-
tion using virtual robots motion data capture.

The real (physical) robot will imitate her virtual pro-
totype; it has no supplementary devices for collision
avoidance, and gives it higher reliability and more cost
efficiency. Also, since there is no device attached to the
real robot tool, one not extends the tool offset distance,
which allows bigger maximum tool weight and better
reorientation performance.

REFERENCES

[1] V. Zordan and J. Hodgins, Motion Capture-Driven Simu-
lations that Hit and React, Proceedings of ACM
SIGGRAPH Symposium on Computer Animation, San
Antonio, TX, July 2002, pp. 89–96.

[2] D. Silver, Cooperative path finding, The 1st Conference

on Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE’05), pp. 23–28, 2005.

[3] J. Pettre, J. Ondrej, A.-H. Olivier, A. Cretual, and S.
Donikian, Experiment based modeling, simulation and val-
idation of interactions between virtual walkers, In Sympo-
sium on Computer Animation. ACM, 2009.

[4] P. Reist and R. Tedrake, Simulation-based LQR-trees with
input and state constraints, IEEE International Conference
on Robotics and Automation (ICRA), pp, 5504–5510,
2010.

[5] K. Gold, An information pipeline model of human-robot
interaction, Proceedings of the 4th ACM/IEEE interna-
tional conference on Human robot interaction, pp. 85−92,
New York, USA, 2009. ACM,
doi:http://doi.acm.org/10.1145/1514095.

[6] A. Powers, S. Kiesler, S. Fussell, and C. Torrey, Compar-
ing a computer agent with a humanoid robot, Proceedings
of the ACM/IEEE international conference on Human-
robot interaction (HRI '07). ACM, New York, USA, pp.
145−152, 2007.

[7] B. Price and C. Boutilier, Accelerating reinforcement
learning through implicit imitation, Journal of Artificial
Intelligence Research, vol. 19, 2003, pp. 569–629.

[8] A. Fratu, Collision Prevention Method and Platform for a
Dynamic Group of Cooperative Robots Who Communicate
Wirelessly, Revue RECENT, Vol. 12 (2011), No. 2 (32),
pp. 131−134.

