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Abstract: The aim of this study is to develop a reliable monitoring system for cutting tools in end milling. 
In this research, cutting force sensor and a vision system are used to monitor milling operations. The 
fundamental challenge to research is to develop a single-sensor monitoring system, reliable as a com-
mercially available system, but much cheaper than the multi-sensor approaches. The cutting forces are 
measured with piezoelectric table dynamometer. Optical visual system is used to observe the actual tool 
conditions after the machining tests. The force sensor signals are then sent to the neuro-fuzzy algorithm, 
which is trained to determine the tool condition and the amount of tool wear. A neuro-fuzzy algorithm is 
investigated, to identify the parameters of membership functions, the set of rules and the output weights. 
The trained adaptive neuro-inference system is also used to discriminate different malfunction states from 
measured signals. By developed tool condition monitoring system, the machining process can be on-line 
monitored and stopped for tool change based on a pre-set tool-wear limit. The developed system is used 
to monitor milling operations and provide warnings to operator, to minimize tool breakage. The effec-
tiveness of tool condition monitoring in ball end milling is investigated through several cutting experi-
ments.  
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1.  INTRODUCTION1 
 

In high speed end-milling it is very difficult to meas-
ure tool wear and detect tool breakage. Detection of 
cutting tool condition is essential for faultless machining 
in flexible manufacturing systems (FMS).  

The main goal of the development of tool condition 
monitoring system (TCM) is to increase productivity and 
hence competitiveness by maximizing tool life, minimiz-
ing downtime, reducing scrap and preventing damage. 
What was the traditional ability of the operator to deter-
mine the condition of the tool based on his experiences 
and senses is now the expected role of the monitoring 
system.  

The role of the operator is typically supervisory. Usu-
ally, the operator is also responsible for loading into and 
unloading parts from several machines in a manufactur-
ing cell, meaning that his time of reaction to a problem 
with any machine will not be sufficient for the speed at 
which machining operations take place on modern ma-
chine tools.  

Each tool condition monitoring (TCM) system con-
sists of sensors, signal conditioners/amplifiers and a 
monitor [1]. The monitor uses a strategy to analyze sig-
nals from the sensors and to provide a reliable detection 
of tool and process failures. It can be equipped with a 
                                                           

 

 

* Corresponding author: University of Maribor, Faculty of         
Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia 
Tel.: 0038622207621 
Fax: 0038622207990 
E-mail address: uros.zuperl@um.si 

signal visualisation system and is connected to the ma-
chine control.  

Many researchers have proposed monitoring systems 
for milling processes with various sensors. Haber [2] has 
used motor current and power for detecting tool wear and 
breakage.  

Achiche [3] investigated the feasibility of using 
acoustic emission (AE) and cutting force signals for the 
detection of tool breakages. Mulc [4] has used force 
signals to detect tool failure and breakage in milling.  

Among all these methods, the accurate measurement 
of cutting forces provides the most effective method for 
monitoring tool conditions. 

Despite many researches, there are no available 
methods for monitoring and controlling the process of 
high-speed milling. In this study, we attempt to solve this 
situation by using the Adaptive Neuro-Fuzzy Inference 
System (ANFIS) to predict the tool condition in end-
milling processes.  
 This model offers the ability to estimate tool conditon 
as its neural network based counterpart providing also an 
additional level of transparency that neural networks fail 
to provide. Therefore, a neuro-fuzzy algorithm is investi-
gated, for the purpose of end-milling processes monitor-
ing.  
 The cutting forces were measured with piezoelectric 
table dynamometer. Optical visual system was used to 
observe the actual tool conditions during the machining 
tests. The force sensor signals were sent to the neuro-
fuzzy algorithm, which had been trained to determine the 
tool condition and the amount of tool wear. 
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Fig. 1. Architecture of tool condition monitoring system. 

 
2.  ANFIS BASED MONITORING SYSTEM 
 

The aim of this study was to develop the accurate and 
reliable monitoring of tool condition in end milling oper-
ations. Fig. 1 shows the basic architecture of the pro-
posed TCM system.  

An adaptive neuro-fuzzy inference system (ANFIS) 
was chosen to estimate the state of the tool under differ-
ent cutting conditions based on single sensor.  

The output of the sensor combined with cutting con-
ditions is sent to fuzzy logic model to provide infor-
mation to machine tool operator. ANFIS used to predict 
the cutting tool condition is shown in Fig. 2. It has tool-
breakage detection capability and is based on pattern 
recognition. 

The method stores a number of reference force pat-
terns that are characteristic of tool breakage. When a tool 
tooth breaks, the cutting force suddenly rises for a while 
and then drops to zero. The system continuously moni-
tors the signal for a break pattern. If the pattern is identi-
fied, a break is declared within 10 ms of the breakage. 
Four steps are required to develop an ANFIS system. In 
step 1, the fuzzy inference system FIS architecture and 

training parameters were selected. The process variables 
are force sensor readings (Fx, Fy), cutting speed (v), feed 
rate (f), depth of cutting (AD/RD), machining time, flank 
wear (wB) and tool condition.  

The domain of definition of these variables is normal-
ized in the range (0,1), where 1 corresponds to the max-
imal value of that variable.  

The fuzzy inference system under consideration has 6 
inputs and one output.  

In step 2, the optimization method, the tolerance er-
ror, the maximal number of epoch, the FIS architecture, 
the number of membership functions and the member-
ship functions types are defined.  

Finding the proper membership function and associ-
ated parameters is very difficult and time consuming 
task. The ANFIS architecture is explained in detail in [5].  

In step 3, the data set is divided into the training and 
the testing set. 350 data points were used in this study.  

Good tools collected half of these and broken tools 
collected the rest.  

All the data were scaled. Neuro fuzzy algorithm 
needs to be trained with a set of training data to be able 
to estimate tool condition based on input- output data. 
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Fig. 2. ANFIS tool conditionand wear estimator. 
 
In step 4, the training and testing phase is accom-

plished. Fig. 2 shows the flow chart of tool condition 
estimation via ANFIS. With the input–output data, the 
neuro-fuzzy algorithm is trained, and the unknown pa-
rameters are identified.  

Fig. 2 shows the inputs, membership function, and 
the fuzzy inference system for tool condition monitoring. 
During the training stage, the ANFIS adjusts its internal 
structure to give correct output results according to the 
input features. Using a given input/output data set, the 
ANFIS method constructs a fuzzy inference system (FIS) 
whose membership function parameters are adjusted by 
using the backpropagation algorithm. This allows fuzzy 
systems to learn from the data they are modelling.  

The FIS structure is a network-type structure, which 
maps inputs through input membership functions and 
associated parameters, and then through output member-
ship functions and associated parameters to outputs. Fig. 
2 shows the fuzzy rule architecture of ANFIS when the 
triangular membership function is adopted. The architec-
tures shown in Fig. 2 consist of 131 fuzzy rules. 

ANFIS applies two techniques in updating parame-
ters. For the premise parameters that define the member-
ship functions, ANFIS employs gradient descent to fine-
tune them. For each consequent parameter that defines 
the coefficients of each output equation, ANFIS uses the 
least-squares method to identify parameter.  This ap-
proach is thus called Hybrid Learning method because it 
combines the gradient descent method and the least-
squares method [5].  

During training in ANFIS, 350 sets of experimental 
data are used to conduct 1 000 cycles of learning.  Final-
ly, in the last step the trained ANFIS is used to predict 
tool conditions. After the training, the inference system 
could estimate tool conditions from cutting force meas-
urement and cutting conditions in real time. The devel-
oped ANFIS model can guide control system or operator 
in tool change decisions making. 
 
3.  EXPERIMENTAL DESIGN 
 

Experiments were performed on a CNC machining 
platform Heller with FAGOR CNC controller. The moni-
toring involved an end milling process of steel parts 
using two end mill tools: a normal tool and a tool with a 
broken tooth.  

The cutting tool used in the machining test was a sol-
id end milling cutter (R216.24−16050 IAK32P) with four 
cutting edges. The tool diameter was 16 mm. Its helix 
angle was 10°. 

The corner radius of the cutter was 4 mm. The insert 
had an outer coated layer of TiN exhibiting low friction 
and welding resistance.  

The workpiece material used in the machining test 
was Ck 45 and Ck 45 (XM) with improved machining 
properties. Workpieces were cut off from a warm-rolled 
bar. The dimension of the workpiece was 200 mm ×     
70 mm × 70 mm.  

The workpiece was mounted in a 3 component piezo-
electric dynamometer (Kistler 9255) to monitor the cut-
ting   forces   in   the   X  and   Y  directions.   The  force  
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Fig. 2. ANFIS tool conditionand wear estimator. 
 

dynamometer was mounted on the machining table and 
connected to a three channel charge amplifier.  

Charge amplifier (Kistler 5001) converts the charge 
signals into voltage signals. The signals were monitored 
by using a fast data acquisition card (National Instru-
ments NI 9215 A) and software written with the National 
Instruments CVI programming package.  

Flank wear was observed during the experiments. 
The cutting tool condition after each cutting test was 
discontinuously observed with a vision system of        
0.01 mm accuracy.  

A vision system consists of a high speed smart cam-
era NI 1772C which was used to detect flank wear with-
out dismounting the tool from the tool holder.
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Table 1 
Partial results of ANFIS tool condition estimation  

 

 

Tool 
conditions 

Input factors 
ANFIS 
outputs 

ANFIS 
Prediction 

 
ANFIS 

Prediction 
WB 

[mm] 

F 
[N]  

n 

[min-1] 

f 

[mm/rev] 

AD 

[mm] 

RD 

[mm] 
Normal 427.2 440 0.17 1.2 8 0.9 Normal 0.11 
Broken 777.9 440 0.17 1.2 8 0.02 Broken 0.24 
Normal 433.9 440 0.13 1.4 8 0.3 Broken 0.17 
Broken 729.6 440 0.13 1.4 8 0 Broken 0.26 
Normal 650.5 440 0.20 1.4 8 0.89 Normal 0.13 
Broken 925.7 440 0.20 1.4 8 0 Broken 0.27 
Normal 614.4 480 0.20 1.4 8 0.88 Normal 0.15 
Broken 751.9 480 0.20 1.4 8 0.03 Broken 0.23 
Normal 904.3 360 0.22 1.6 8 0.89 Normal 0.14 
Broken 991.9 360 0.22 1.6 8 0 Broken 0.31 
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Fig. 3. ANFIS output of tool condition. 
 
 It was calibrated using a 10 µm resolution. 

The main cutting edge and wear land depth was used 
to monitor the tool condition.  

The flank wear was measured by counting pixels 
from the vision system and comparing the number with 
the measuring scale.  

The output was assigned a 0−0.25 for good tool,   
0.4−0.8 for worn tool and 0.9 for broken tool, based on 
amount of flank wear.  

Cutter with more flutes has different wear on each in-
sert. Therefore only one flute is selected for tool wear 
measurements.  This insert is marked. 

Trapezoidal membership functions were used to con-
vert the output of ANFIS algorithm from numbers to 
linguistic values. This will result in greater accuracy and 
robustness of tool condition estimations. 

The 3-axis machine tool with ball-end mills was used 
for executing cutting experiments to collect tool wear 
data.  

The experiments were carried out for all combina-
tions of the chosen cutting parameters and tool wear. In 
the experiments the cutting parameters were set as: four 

levels of feed rate (f1 = 0.05, f2 = 0.25, f3 = 0.35, f4 = 0.45 
mm/tooth), four levels of cutting speed (v1 = 200, v2 = 
360, v3 = 340 and v4 = 480 min-1) and three levels of radi-
al/axial depth of cut (RD1 = 1d, RD2 = 0.5d, RD3 = 0.25d; 
AD1 = 2, AD2 = 4, AD3 = 8 mm; d = 16 mm-cutting parame-
ter). The parameters such as tool diameter, rake angle, 
etc. were kept constant.  

 
4.  RESULTS AND DISCUSSION 
 

During training of the neuro-fuzzy algorithm the pa-
rameters of membership functions, the optimal rules and 
the output weights were determined.  

The best results were obtained when triangular mem-
bership functions were chosen for the neuro-fuzzy mod-
el.  By using trapezoidal membership functions higher 
error was reached. When the ANFIS model was trained, 
testing data were used for verification. The training was 
very fast, and the error reached a constant value after 
about 30 epochs. In this case, there were 131 rules in the 
fuzzy inference system. After the training, the testing 
data was applied to the algorithm to determine its validi-
ty. 
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Fig. 4. a − Indicative tool breakage force pattern with limits; b 

− Dynamic limit strategy.  
 

The system was capable of detecting tool conditions 
accurately in real time. The accuracy of the training data 

was 98.1%, and the accuracy of the testing data was 
94.9%. The results of the ANFIS testing are shown in 

Table 1 and in Fig.3. 
The output node value of ANFIS algorithm was 

mapped as 0.1 for the normal cutting state and 0.9 for the 
tool breakage. When the outputs are over 0.9 (bad tool), 
the ANFIS system sends the signal “Bad tool” to the PC.  

When output is below 0.8, the ANFIS sends the sig-
nal “Tool worn”. The reason why values over 0.9 were 
recognized as the abnormal state is that the cutter with 
severe flank wear increases power at frequencies higher 
than tooth-passing frequency, so that the ANFIS may 
decide about the states incorrectly.  

The developed monitoring system incorporates sim-
ple fixed limits for the tool breakage detection. The lim-
its are: L1 (collision), L2 (tool fracture), L3 (worn tool) 
and L4 (missing tool limit). 

In our current study, we are trying to replace fixed 
limits (Fig. 4) with self-adjusting limits. The two dynam-
ic limits above and below the monitoring signal follow 
the monitor signal continuously, for every load level at a 
limited adoption speed.  

In the case of an extremely fast crossing of one of the 
two dynamic limits, the limits are frozen and total break-
age is distinguished via the fuzzy decision system. 

The detection system demonstrated a very short re-
sponse time to tool conditions. Because tool conditions 
could be monitored in a real time, the worn tool could be 
replaced immediately to prevent damage to the product 
and the machine. 

The developed algorithm correctly estimated tool 
wear condition for 18 out of 20 cases.  

Wrong estimations accrued when the feed rate and ro-
tational speed were low. This may have resulted due to 
effects of the built-up edge. This issue can change the 
cutting forces and affect the tool wear estimation via 
force signals. Fig. 3 shows the actual outputs (tool condi-
tion) versus the outputs obtained from the neuro-fuzzy 
algorithm. There are three different regions in the dia-
gram: good, worn and broken. Shaded areas represent 
transition regions.  

The force sensors give a good estimation of the tool 
condition.  

The time of training increases with the increase of the 
number of inputs. This is not a problem since the training 
is done off-line. 

After the off-line training, the neuro-fuzzy algorithm 
is able to predict tool wear on-line.  

Tool wear measurements were very sensitive to the 
lighting of the vision system. 
 
5.  CONCLUSIONS  
 

In this research, cutting force sensor and a vision sys-
tem were used to monitor milling operations. A monitor-
ing system using a neuro-fuzzy algorithm is able to clas-
sify various cutting states, such as tool breakage and tool 
wear.  

Tool wear was monitored after each cutting test with 
a vision system that measured the flank wear of the tool. 
The cutting force signals signals and the measured tool 
wear were analyzed off-line and applied to a neuro-fuzzy 
method to determine the membership functions and rules. 
Once the neuro-fuzzy algorithm was trained, the cutting 
signals could be interpreted to determine the tool wear 
through on-line analysis.  

Comparison between the actual tool wear and the 
simulated results from the neuro-fuzzy method showed 
good agreement. The trained model can be used to moni-
tor milling operations and provide warnings to an opera-
tor, in order to minimize tool breakage. 
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