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Abstract: Paper shows the general characteristics of graded materials, their previous industrial use and
potential use of graded materials in the future. In any case, today the use of graded materialsisincreas-
ing and moving from the laboratory environment into everyday use. However, the subsequent processing
of the graded material remains the big unknown, and represents a major challenge for researchers and
industry around the world. It could be said that the study of machinability of these materialsisin itsin-
fancy and in this area are many unanswered questions. Machinability problem of graded materials was
undertaken at the Faculty of Mechanical Engineering in Maribor. After a radical study of the literature
and potential machining processes of graded materials, we started with the implementation of cutting
processes on the workpiece. This professional paper presents the first results of the analysis, which will
be used for further research and machinability study of graded materials. Also prediction of cutting
forces with neural network by milling functionally graded material was made. In paper first predicted
cutting forces by milling graded material are presented.
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1. INTRODUCTION The most common reasons for using graded materials

Functionally graded materials (FGM) has been in in_are )
tensive use for last two decades. The first coscept * High surface hardness
graded materials were conceived in 1984 duringdhe * Good surface wear resistance.
velopment of the Japanese space program. Their main Different graded structures dampen vibrations.
feature is the non-homogeneous microstructure girou

whole structure, where every layer has its own @aicr graded materials that do not have distinct layeith w

stru_lt_:;[]ure an(tzl fdlfferenttlmechanlcatl %ropertles. f th q different chemical compositions, but they have abo
e most frequently represented scopes of the dra egeneous chemical composition of the modified micro-

materials are [46]: structure. The mechanical properties of these riadder

Special case of graded materials represents partial

» Aerospace. are comparable with the properties of the gradetinina
* Military industry. als with distinct layers with different chemicalroposi-
» Medicine. tion [9-11].

Optoelectronics. The largest groups of graded materials are asvisllo

In any case, by reducing manufacturing costs in the Bioactive graded materials.
future is expected that list of areas where gradatkri- « Tool steel with C, V, Cr and Ti gradients.

als are used will be much bigger. The greatestrtdge . Materials with self-lubricating ability.

of graded materials is their surface functionalliya . Graded materials with high temperature resistant su
However the properties of graded materials alscedep face layer.

on the properties of the base material. In mosesas

hardness of graded material may vary. Surface l&yer

the hardest and hardness usually linear fall tostifeest Cladded layer
zone of material, which is in the region where basa-
terial and graded layer are mixed, shown in Fify, B].
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Fig. 2. Properties of graded material.

2. PROPERTIESOF FUNCTIONALLY GRADED
MATERIALS

Laser beam

Focusing lens

Graded materials are very innovative product in the z-axis positioning

field of technology. Also very innovative is thgiroduc-

tion. The most common methods of manufacture grade:

materials are as follows:

The application of thin film coatings (PVD, CVD).
Powder metallurgy.

Centrifugal method of manufacturing graded mate-
rial.

Additive fabrication (SLS, LENS, SLM).

The properties of cladded layers are classifietthiee
groups (Fig. 2). Some of those properties may ber-in
related. The wear resistance can, for instanceffeeted
by the hardness, the microstructure, the numberawks
and their depth and direction, the bonding betwease
material and substrate, etc. [1, 5, and 6].

3. PRODUCTION OF GRADED MATERIALS

Laser cladding is used to improve the surface prope

of laser lens and
powder feed
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Fig. 3. Schematic view of LENS process.
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Table1
Operational work settings on L ENS machine Optomec
LENS 850-R.

ties of metallic machine parts. A wide variety afnt
mercial metallic or ceramic powders is availablbo3e

powders were developed for the use in plasma amaef|

spraying. They are also fit for use in laser claddibe-

cause the intended functional properties are thesa

A high power laser beam is used to melt metal pow

M achine settings Value
Power 580 [W]
Feed rate 10 [mm/s]
Amount of filler material 5.8 [g/m]
Number of layers 4
Spacing between layers 0.4
Mark of filler material 1.3343

der supplied coaxially to the focus of the lasearhe
through a deposition head. The laser beam typicaly
els through the centre of the head and is focused t
small spot by one or more lenses. The x-y tabfadsed
in raster fashion to fabricate each layer of theedi(Fig.
3). The head is moved up vertically as each layeom-
pleted. Metal powders are delivered and distribute
around the circumference of the head either byitrav
or by using a pressurized carrier gas. An inerbsthirgas
is often used to shield the melt pool from atmosiche
oxygen for better control of properties, and torpote
layer to layer adhesion by providing better surfacs-
ting. Test parts used in the experiment were preduc

with the machine Optomec LENS 850-R. Operational
parameters for the production of test parts on inach
Optomec LENS 850-R are shown in Table 1.

d4' ARTIFICIAL NEURAL NETWORK (ANN)

The principal characteristic of neural networkshiat
they are capable of finding the rule that connectiput
and input parameters, during the process of trginin
When the neural network is trained, it operates ats
situations with which it did not encounter duriniget
process of training [7, 8].
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Fig. 4. Neural networksa — feed-forward back-propagation neural network withidden layers and 3 outpubs: feed-forward
back-propagation neural network with 4 hidden layard 1 output.

In this paper, the most commonly used technique; th cutting forcesF,, F, andF, by milling graded material
feed-forward back-propagation neural network isphgida ~ are shown in Table 2.
for the prediction of cutting forces in milling apgion. It Cutting forces were measured with the cutting ferce
consists of an input layer (where the inputs ofgheb- ~ measuring system. Main parts of the cutting foreasa
lem are received), hidden layers (where the relatigps ~ Uring systemare:
between the inputs and outputs are determined)aand * CNC machine with CNC controller.
output layer (which emits the output of the probjem * Dynamomete_r_.

The input parameters for the neural network were* Charge amplifier.
depth of cut &) and feed ratef), which is shown in Fig. * Dataacquisition.
4. The input parameters influenced most on the afze * Software for optimization.

cutting force, which is an output parameter of AR\ Measured cutting forces by milling functionally

10]. graded material were further used to build a nene&
work which is shown in Fig. 4a) and Fig. 4b).

4.1. Topology of neural network Milling on workpieces was performed with carbide

The number of neurons in the input layer is definedball-end mill cutters and end mill cutters manuaet
by the number of input parameters; the input layer by Sandvik Coromant.
cludes two neurons. By milling graded materials, advantageous, shodt an
The number of neurons in the output layer is theesa broken chips were produced. Large tool wear hagane
as the number of output parameters. In our casedtor  tively influence on the quality of the machined fage.
1 output parameters. Output parameters shown in FigAfter 25 minutes of machine treatment on the CNG ma
4a) and Fig. 4b) in our case are: chine, the cutting edge breakage on both cutters ap
- components of cutting forces in all three directioi ~ Peared.
the coordinate systerfr, Fy, F,).

+ main cutting forcR [11], 6. NEURAL NETWORK TRAINING AND

RESULTS

In our case two neural networks with different num- For neural network learning, data shown in Table 2

ber of hidden layers were made. Fig. 4a showsapelt oo used; but 4 samples which were used for gestin
ogy of first neural network in which output paraatet ANN were eliminated. For the purpose of testing the

were the components of cutting fordg,,(F,, F,) in the - - :
R . earning effectiveness of ANN experiments under the
directions of the coordinate system used by the CNdseriaI number 8, 15. 27 and 32 were eliminated.

machine. Feed-forward back-propagation neural ndtwo Table 3 shows the testing results of ANN; where

with 4 hidden layers was used [12, 13, 14]. maximum learning error of neural network is 21 %-R
Fig. 4b shows the topology of second neural network g o - )
sults are shown in Fig 5. This is actually negligibrror;

that was used to predict the main cutting foRcdeed- . .
forward back-propagation neural network with 4 leidd it means that the difference between actual andigiesl
force is round 50 N by experiment 1. In experiments

layers was used. ) 4 :
from 25 to 36 much higher forces appears; (in campa

5 EXPERIMENT REALIZATION son with experiments from 1 to 24) the maximumrear
ing error of ANN in this cases is less than 4 %.

Milling of workpieces made of graded material was Best validation performance of ANN used for pre-
on CNC miling machine Heller BEA 01. Material dicting main cutting forceR is shown in Fig. 6. In this

GGG70 (hardness 23 HRC) was used as the basic mate- i ) . .
rial (Fig. 1), while the mixture of the basic mabrand Gase Feed-forward back propagation neural netwattk w

the feed material S-6-5-2 (hardness 65 HRC) wad use? Nidden layers shown in Fig. 4b) was used. _
for the making of the graded layer which was 2.5 mm Training results of ANN for predicting main cutting
thick. forceR are shown in Table 4. Maximum learning error of

Cutting parameters used in experiment were: spindleneural network is less than 9 %, which is actuakygli-
speedn = 3000 rpm, feed rate= 200 mm/min and cut- gible, it means that the difference between actaral
ting deptha, = 0.5 mm. An example of the measured predicted cutting force is less than 100 N.
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In experiments from 25 to 36 much higher forces ap-8 %. It was actually found out that this predictidoes
pears (in comparison with experiments from 1 toths) not have influence on our CNC machine and milling
maximum learning error of ANN in this cases is lésmn process.
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Fig. 5. Results of ANN for predictingy, Fy, F..

Table 2
Depth of cut, feed rate and measured forcesF,, Fy, F,, R
Exp. No. a, [mm] f F, [N] F, [N] F,[N] R[N]
1 0.25 10 545.30 148.60 51.30 567.51L
2 0.25 15 561.70 173.10 62.50 591.08
3 0.25 25 583.90 196.70 69.70 620.0f
4 0.25 50 628.80 211.40 77.90 667.94
5 0.25 75 694.50 255.70 87.70 745.2b
6 0.25 100 765.10 302.20 98.60 828.51
7 0.50 10 841.60 305.90 117.50 903.15
8 0.50 15 893.60 308.60 134.9( 954.96
9 0.50 25 962.00 315.10 156.40 1024.30
10 0.50 50 1081.00 323.30 180.8 1142.70
11 0.50 75 1187.40 352.10 207.5( 1255.77
12 0.50 100 1243.60 398.40 267.80 1333.03
13 0.75 10 1303.70 428.60 302.7 1405.83
14 0.75 15 1394.70 489.30 365.7 1522.61
15 0.75 25 1472.20 536.70 403.4( 1618.07
16 0.75 50 1568.80 595.50 443.3 1735.59
17 0.75 75 1652.90 653.40 521.6 1852.82
18 0.75 100 1742.80 774.30 615.20 2003.84
19 1.00 10 1814.20 832.40 705.8( 2117.16
20 1.00 15 1879.30 889.10 794.6 2225.68
21 1.00 25 1987.20 952.30 856.4( 2364.16
22 1.00 50 1973.80 1023.6( 901.30 2399.16
23 1.00 75 2087.60 1068.7( 968.70 2537.43
24 1.00 100 2165.10 1102.7 1009.10 2630.95
25 1.50 10 2224.00 1153.6( 1085.30 2730.36
26 1.50 15 2301.80 1204.5( 1145.70 2839.32
27 1.50 25 2397.30 1247.3( 1214.30 2962.66
28 1.50 50 2461.10 1284.3( 1287.60 3060.12
29 1.50 75 2533.90 1311.3( 1352.00 3157.p2
30 1.50 100 2642.60 1374.6 1448.40 3312.p1
31 2.00 10 2812.50 1437.2( 1584.90 3533.)/8
32 2.00 15 3001.80 1489.7( 1712.30 3763.24
33 2.00 25 3138.60 1533.4( 1842.70 3949.89
34 2.00 50 3314.30 1573.6( 1958.60 4158.P6
35 2.00 75 3522.40 1638.4( 2040.00 4387.85
36 2.00 100 3785.20 1745.80 2115.60 4674.64
Best Validation Performance is 3733.0575 at epoch 25 _ BestValidation Performance is 16477.2979 at epoch 35
I Train e ? Train
WValidation | Validation
Test 10°_§ Test
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Fig. 6. Results of ANN for predicting main cutting forBe
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Table3
Measured and predicted values of cutting forces Fy, Fy, and F, by using ANN
Exp. No M easured values Predicted valuesusing ANN % Error
| BNl | Ry[N] F [N] Fx[N] Fy[N] F,[N]

1 545.30 148.60 51.30 539.36 179.83 45.64 1.09 221.011.03
2 561.70 173.10 62.50 558.8Y 179.12 57.49 0.50 31488.02
3 583.90 196.70 69.70 588.70 184.33 68.39 0.2 6/291.88
4 628.80 211.40 77.90 625.94 210.79 76.95 0.46 01291.22
5 694.50 255.70 87.70 695.14 252.47 87.58 0.09 11260.14
6 765.10 302.20 98.60 765.14 304.24 96.60 0.01 0168.02
7 841.60 305.90 117.50 849.00 290.38 128117 0.88 07 5. 9.08
9 962.00 315.10 156.40 962.56 293.99 159.p9 0.06 70 6. 1.85
10 1081.00| 323.30 180.8( 1083.92  333.49 18782 0.273.15 3.88
11 1187.40| 352.10 207.50 1210.66  376.98 22124 1.p67.07 6.62
12 1243.60| 398.40 267.80 1187.96  415.80 227(72 4.474.37 14.97
13 1303.70| 428.60 302.70 1301.12  437.34 300{84 0.202.04 0.61
14 1394.70| 489.30 365.70 1391.14  491.65 350{03 0.260.48 4.29
16 1568.80| 595.50 443.30 1466.33 565.28 426/53 6.535.08 3.78
17 1652.90| 653.40 521.60 1649.98 659.07 528(14 0.180.87 1.25
18 1742.80| 774.30 615.20 1743.68 765.70 618(17 0.p51.11 0.48
19 1814.20| 832.40 705.80 1819.23  857.71 741{13 0.83.04 5.01
20 1879.30| 889.10 794.60 1885.37  884.08 794(02 0.320.57 0.07
21 1987.20| 952.30 856.40 1981.11 959.32 86533 0.310.74 1.04
22 1973.80| 1023.60 901.3( 1972.20 101866 903|160 08 0] 0.48 0.26
23 2087.60| 1068.70 968.7( 2092.14 1058/34 961{86 22 0| 0.97 0.71
24 2165.10| 1102.70 1009.10 2163.96 1112|23 1008.620.05 0.86 0.05
25 2224.00f 1153.60 1085.30 2188.63 1160{11 1081.08..59 0.56 0.39
26 2301.80| 1204.5Q0 114570 2253.53 1173|15 1132.62.10 2.60 1.14
28 2461.10| 1284.30 1287.60 246255 1278[98 1292.92.06 0.41 0.41
29 2533.90| 1311.30 1352.00 2532.13 1321{45 1344.88.07 0.77 0.53
30 2642.60| 1374.6Q0 1448.40 2641.Y7 1373|183 1447.84.03 0.06 0.04
31 2812.50| 1437.2Q0 1584.90 2924.67 1469(79 1657.643.99 2.27 4.59
33 3138.60| 1533.4Q0 1842.70 3144.98 1523|56 1832.03.20 0.64 0.58
34 3314.30( 1573.60 1958.60 3304.83 1578|51 1960.72.29 0.31 0.11
35 3522.40( 1638.40 2040.00 3404.13 1690(78 2060.853.36 3.20 1.02
36 3785.20( 1745.80 211560 3739.45 1808/50 2195%.871.21 3.59 3.79

Table 4
Measured and predicted values of main cutting force R by using ANN.

Exp. No. | Measured valuesR[N] | Predicted valuesusing ANN R [N] % Error
1 567.51 567.02 0.09
2 591.08 582.66 1.42
3 620.07 613.65 1.04
4 667.94 689.83 3.28
5 745.25 765.04 2.66
6 828.51 840.25 1.42
7 903.15 939.36 4.01
9 1024.30 1008.18 1.57
10 1142.70 1119.54 2.03
11 1255.77 1227.38 2.26
12 1333.03 1332.36 0.05
13 1405.33 1525.04 8.52
14 1522.61 1553.62 2.04
16 1735.59 1742.74 0.41
17 1852.32 1866.37 0.76
18 2003.84 1980.95 1.14
19 2117.16 2174.88 2.73
20 2225.68 2205.63 0.90
21 2364.16 2265.29 4.18
22 2399.16 2403.59 0.18
23 2537.43 2526.47 0.43
24 2630.95 2634.44 0.13
25 2730.36 2794.75 2.36

79
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Table 4 (Continuation)
26 2839.32 2826.89 0.44
28 3060.12 3042.73 0.57
29 3157.22 3184.61 0.87
30 3312.21 3314.22 0.06
31 3533.78 3801.58 7.58
33 3949.39 3935.32 0.36
34 4158.96 4167.69 0.21
35 4387.85 4409.60 0.50
36 4674.54 4657.97 0.35
Table5
Parameter sthat were used to test and verify the quality of thetrained ANN
Exp. 3 [mm] f M easured values Predicted valuesusing ANN % Error
No. [mm/min] Fx [N] Fy [N] Fz [N] R [N] Fx [N] Fy [N] Fz [N] R [N] Fx Fy Fz R
8 0.50 15 893.6Q0 308.6D 134.90 954/96 895.99 294.406.05| 962.48 0.2/74.60|8.27|0.79
15 0.75 25 1472.2D0536.70| 403.40 1618.071472.91] 548.97| 394.300 1609.610.05| 2.29| 2.26| 0.52
27 1.50 25 2397.301247.30 1214.30 2962.66) 2346.14] 1194.04{ 1206.59| 2890.30 2.13| 4.27| 0.64| 2.44
32 2.00 15 3001.801489.70] 1712.30 3763.24] 2996.60| 1487.61| 1714.53 3845.65 0.17] 0.14| 0.13] 2.19

The quality of learning ANN was tested with datatth
were excluded from the learning base. Table 5 shbeis
data that were used to test and verify the qualitthe
trained ANN. In the table measured values for agruf
predicted data and the calculation of the percengagpr
are shown. The maximum error in the predictionnofi-
vidual components of the cutting forces is lesst@&b
and the total cutting force error is less than 3aftich is
certainly under acceptable limit, that was set agoal
before our experiments were implemented.

(3]

(4]
7. CONCLUSIONS

The first results of milling very hard material suas
graded material shows us that the machining of suchs)
materials is possible. In any case, in the futuié ve
even more important to focus on the correct geonutr
the cutting tool to reduce the size of the cutfioiges in
all three directions of the coordinate system wtsdoh at
the moment very large.

On the other hand, the prediction of the cuttingds
proved to be very reliable; the error in predictmgting
forces was smaller than 10 %. This is a very rédiab
prediction for the planned cutting force, whichoals us
to operate the machine in a safe area.

Our wish for the future is to find the suitable towg
parameters (cutting speed, feed rate, cutting ¢deptfor
optimal milling of graded material. With this optan
cutting parameters we want fully displace the grigcbf
graded material with milling, where material rembiga
greater.

In any case simulations, optimizations, predictirig
cutting parameters and cutting experiments of gtade
materials are wished to be performed. Our goab ig+
troduce milling of graded material into daily pration
and replace grinding with more productive cuttingg
ess.

(6]

(7]

(8]

(9]
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